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Introduzione

Buonsalve!

In questo documento ho cercato di riordinare gli appunti di Relativita Speciale
tratti dal corso di Fisica Moderna tenuto dal professor Flavio Seno presso il
Dipartimento di Fisica dell’Universita di Padova nel corso del secondo semestre
del 2018.

Tale lavoro e frutto di una rielaborazione personale, motivata principalmente
dall’interesse per la materiaﬂ. Per questo in diversi punti mi sono concen-
trato sul ricercare una qualche sorta di intuizione per spiegare/visualizzare i
risultati ottenuti. Chiaramente non posso garantire che i ragionamenti che ne
sono scaturiti siano corretti, ma solo che quando li ho scritti mi sembravano
ragionevoli.

Potrebbero esserci errori di formattazione, parentesi saltate, o peggio, coeffi-
cienti/esponenti/segni errati in giro (ma non dovrebbero essere tanti). Se ne
sgamate qualcuno, fatemi sapere. Ditemi anche (se avete tempo e non vi scoc-
cia) se ci sono passaggi non chiari: sono dell'idea che eventuali punti oscuri
siano sintomo di qualche cosa che non ho veramente capito (ma che penso di
sapere, cosa che & pericolosissima).

Per il resto questa non e la versione finale degli appunti: comprende infatti
solo gli argomenti dalla cinematica relativistica in poi. Sto ultimando una
discussione anche della parte iniziale, che e stata notevolmente rallentata dal
cercare di chiarire il significato di componenti covarianti/ contravariantﬂ e che,
eventualmente, aggiungero qui. Ma poiché le altre parti sono relativamenteﬂ
complete, perché aspettare? Magari a qualcuno puo servire tutto cio.

Prima di iniziare, ultimo disclaimer (che dovrebbe essere scontato dato che
non ho una laurea): questi appunti non sono da intendere come sostituzione
delle lezioni, o di altre dispense gia presenti.

Buon viaggio! :)

Francesco Manzali, 03/06/2018

Aggiornamenti
Data Aggiunte Errata corrige
03/06/2018 Prima pubblicazione
14/10/2018 Nulla Corretti vari errori e refusi su segnalazione (con sommo ritardo).

Table“1: Cronologia di modifiche/aggiornamenti agli appunti

IFisica moderna is best fisica
211 mio dubbio principale & stato: “E queste chi le ha ordinate?”
3Pun intended
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1 Cinematica relativistica

1.1 Decadimenti

In un decadimento una particella si scompone spontaneamente in piu parti-
celle diverse. Si tratta di un fenomeno probabilistico, per cui non e possibile
determinare in anticipo quando una data particella decadra. Tuttavia, con-
siderando quantita macroscopiche di sostanze, e possibile scrivere una legge
statistica riguardante il decadimento:

N(t+dt) = N(t) — AN (t)dt = %V =\

N(t) ¢ il numero di particelle della sostanza iniziale presenti nel sistema con-
siderato al tempo ¢. Dopo un intervallo infinitesimo dt, tale numero ¢ destinato
a decrescere con una velocita A, che costituisce la costante di decadimento. La
soluzione esplicita dell’equazione differenziale é:

N(t) = Nee 77 7==
A

dove 7 (vita media) € I'intervallo di tempo necessario a ridurre la popolazione
iniziale Ny di particelle al 36.8% (1/e). Spesso si fa ricorso al tempo di
dimezzamento t,,; = In27, che corrisponde allintervallo medio di tempo
necessario perché il numero iniziale di particelle si dimezzi.

Si consideri un generico urto in cui una particella di massa M si scompone in
N particelle di masse mq ... my.
Poniamoci nel sistema di riferimento in cui la particella iniziale e ferma, che da
ora in poi chiameremo sdr del centro di massa (CM). Allora, ponendo ¢ = 1,

si avra che:
2
P =p™" =P =M = p? = M

Applicando la conservazione dell’energia:

N N N
M=Ei+-+Ey=SE =Y \ym2+p?>Y m
=1 =1 =1

ossia la somma delle masse delle particelle prodotte dal decadimento deve
essere minore della massa iniziale della particella che si & decomposta (non si
puo creare massa dal nulla).

Si consideri ora una particella di massa M che decade in due particelle piu
piccole di massa mq e msy, con M che e inizialmente in movimento rispetto al
sdr del laboratorio.

In questo caso e conveniente analizzare il moto nel sdr del centro di massa del
sistema (la cui origine coincide ovviamente con la particella iniziale), indicato
con .

Nel sdr del CM il trimomento iniziale € nullo, e percio, indicati con pj e pj} i
trimomenti delle particelle prodotte, si avra:

pi+py =0=pi| = [p3] = p" (1)

ossia le particelle prodotte hanno, in modulo, lo stesso trimomento, e sono
lanciate lungo la stessa direzione in versi opposti.

Francesco Manzali, Giugno 2018

Equazione dei
menti

decadi-

Massa  iniziale >

massa prodotti

Decadimento
particelle

in due



Detto 6* I'angolo descritto con +z dal moto della prima particella prodotta,
si ha percio:

E
P = (;,p* cos . p* sin@*,O) ; py = (B3, —p*cosf*, —p*sinfh*,0)

Nota: da qui in poi si usera la convenzione per cui ¢ = 1.
Ricavando le energie dai momenti:

By =mid +p~F By =mi+pt = B By =mi-mj  (2)

Applicando la conservazione dell’energia nel sdr del CM (dove la particella
iniziale ¢ ferma):
MZ=E;+E; = Ef =M — E} (3)
Possiamo ora mettere a sistema [2] e [3] per ricavare le energie in funzione delle
masse. La via piu veloce ¢ moltiplicando e dividendo per 'energia totale:

2

. : *2 *
Ef + E EY — Ej m2 —m3

EY — E)— = = =M —2FE} 4
M? —m2+m?
ey (5)
= 2 2
ms —ms + M
Eyj=—2_"1 A~

2M

.. 2 2 . .
Da 2] si ricava p* = E} — m?, e sostituendo Iespressione appena trovata per

2 . .
E7" si giunge a:

: 1
C4M?

*

p

[M* +mi+mj —2M*(m? +m2) — 2m2m?] (6)

Chiamiamo 67, 1'angolo formato dalla velocita della particella di massa m,
(con a = 1,2, poiché il decadimento ¢ in due particelle) con I'asse +Z appena
dopo il decadimento. Scomponendo la quantita di moto sugli assi si ottiene
Pay =D cosOy e p; = p*sindy. Nel sdr del CM, si avra poi 63 = m — 67, in
quanto i momenti delle due particelle sono opposti.

Nel sdr del laboratorio, tuttavia, la particella iniziale € in movimento, e percio
la direzione di uscita delle particelle del decadimento non sara opposta, ma
tale che il momento (inizialmente non nullo) sia conservato.

Applicando la trasformazione di Lorentz al quadrimomento si ottiene:

v By 0 0| Ei/¢ Y(E; + Bp* cos 6} Eo/¢
By v 0 0] [preosty| _ |y(pTcosOi+ BEY)| | Pae
P 0 0 1 0f|p sind, B p*sinf Bl Pay
0 0 0 1 0 0 Do,z

Scrivendo il quadrato del momento p* in funzione di p,, € pa,y si giunge a:

2

2
(p(;x — ﬂE;) +pl, = p* (cos® 0 + sin6?) = p*

Francesco Manzali, Giugno 2018

Energia e momento

Angolo



Equazione che puo essere riarrangiata come:

_ * )2 2
(Pae — VBEY) L Pay
* 2 o2

(™) P

—1 (7)

che rappresenta un’ellisse sul piano pg s, pa,y, con centro posto a (yBE ,0)

e semiassi s, = py e s, = p In particolare 'ellisse puo non compren-
dere l'origine se il centro si trova ad una distanza dall’origine maggiore della
lunghezza del semiasse s, ossia per 8 > p*/E* = 5%, dove f = vop/c (nel sdr
del laboratorio). Quando cio si verifica si parla di emissione in avanti.

Per determinare il valore dell’angolo massimo, consideriamo una retta gener-
ica sul piano paz, Pa,y, che sara parametrizzata come p,, = gcost, da cui
Pay = ¢sinf. Intersecando I'equazione [7| con tale retta, e imponendo la con-
dizione di A = 0 nell’equazione di secondo grado risultante, & possibile deter-
minare il valore di 6,,,, per cui la retta risulta tangente all’ellisse.

Ponendo € = SE? per semplicita, ed effettuando le sostituzioni, si ottiene:

(qcosf — ve')?

2 +¢*sin?0 = p*’

Dalla relazione v = 1/(1 — 3?) e svolgendo il quadrato si giunge a:

2q cos O¢'

¢*cos?O(1 — 32) + €7 — + ¢*sin? = p**

Raccogliendo un ¢* e semplificando si giunge infine a:

2q cos B¢

¢*(1 — % cos ) — +e?—pP =0

Con A =1—2cos?f, B = cosfe [y e C = €* — p** si evidenzia equazione
di secondo grado: ¢?A — 2¢B + C = 0. Imponendo il A = 0 si ha:
B?> — AC =0 = cos?0e*(1 — %) — (€2 — p**) + B cos® 0(&% — p*°) = 0

Espandendo si ottiene ’espressione per il coseno:

cos?0(e? — p* B2) = ? — p*’ = cos?f = 7612 il
€2 — p*262
Da cui si puod ottenere quella per il seno tramite sin?6 = 1 — cos? 0:
2
(1 — 2
sin2g =L ") ( 26 )
6/2 - p* 62

E possibile riscrivere il denominatore partendo dalla relazione:

, 2 ) €2 p*2 52

B =ity = mo = B " = G =

dove si & sfruttata la sostituzione €? = 32E2 = E2 = €?/3° . Si giunge percio
ad un’espressione piu semplice per il seno:

*2 *

prA-5) _ p

20 _ : maxr __
sin” 0 = 2R m2 = sin 0" =
a alP™

- ma62 _ 6/2_]9*262

2 *

o
M3y
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Se la particella che decade ha uno spin nullo, allora, nel sistema di riferi-
mento del centro di massa, la distribuzione degli angoli d'uscita delle particelle
generate sara uniforme: non ci sara cioe un angolo d’uscita piu probabile degli
altri, e le particelle saranno emesse equamente in ogni direzione. Partendo da
questo fatto sperimentale, ci si pone il problema di determinare la distribuzione
delle energie delle particelle osservata nel sistema di riferimento del laborato-
rio, rispetto al quale il CM si muove a velocita v, da cui sono determinati i
parametri 3 e 7.

Consideriamo un certo numero M di decadimenti, che produrra N;, parti-
celle risultanti. Ponendo un rilevatore sferico attorno al sito di decadimento e
stazionario rispetto ad esso (quindi stazionario nel sdr del CM), ci si aspetta
che attraverso sezioni uguali di rilevatore passi (mediamente) lo stesso numero
di particelle. In altre parole il numero di particelle N’ che passa attraverso una
certa sezione A € proporzionale all’area di tale sezione tramite una costante che
chiamiamo o: N(A) = oA, con 0 = N, /4mw. Poiché abbiamo usato una sfera
di raggio unitario, A corrisponde (per definizione) all’angolo solido sotteso da
quella sezione (da Q = A/r? con r = 1).

Fissato un sistema di coordinate sferiche attorno al CM, con angoli 6 e ¢,
possiamo ora costruire la funzione densita di probabilita dx(0*) che restituisce
la probabilita di una particella di uscire ad un angolo 6%, ossia di attraversare
la corona sferica compresa tra 0* e 0* + df*. Tale sezione sottende un angolo
solido pari a:

dQ* = (27 sin 0%)do*

(Basta figurarsi la sfera unitaria: 27sin@* ¢ la circonferenza interna della
corona sferica, e df e il suo spessore infinitesimo. Srotolando la striscia della

corona circolare essa risulta un rettangolo dalle cui dimensioni ricaviamo l'area).

Sostituendo nell’espressione per N(£2):

AN (Q) = 0dQ = AN (67) = @f;t) (27 sin 0°d0")
dN (0*) & percio il numero di particelle, originate da M decadimenti, con angolo
di uscita pari a 6* nel sdr del CM. Per giungere alla densita di probabilita
cercata, ¢ necessario normalizzare: basta dividere per il numero di particelle
originate (Niot):

AN (07) = ;sin 0*do* = ;dcos 0"

dN(6) ¢ la probabilita, e f(6*) = 1 sin6* ¢ la funzione densitd di probabilitd.
Nel secondo passaggio e sottinteso un cambio di variabile casuale da 6* a cos 6*:
il segno — che comparirebbe di norma ¢ cancellato dal modulo della formula
del cambio di variabili casuali (in quanto una pdf ¢ definita positiva): vedi
appendice.
Poiché ci interessa effettuare un cambio di variabile per associare angoli ad
energie (e ricavare la distribuzione delle energie), conviene adottare come vari-
abile direttamente cos#*. Il cambio di variabile e infatti dato dalla trasfor-
mazione di Lorentz dell’energia:

E(cost*) = y(E* + pp* cosf™)

Prendendo quindi la funzione densita di probabilita f(cos@*) = 1/2 (ricavata
sopra), si puo applicare direttamente la formula per il cambio di variabile

Francesco Manzali, Giugno 2018
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casuale:

f(E(cosd* 1/2 1
oy = (B / .
|dCOSH*E(COSQ ) dcos&*V(E + fp” cost)

Alternativamente, per andare veloci, si puo usare il metodo (barbaro) di molti-
plicare i differenziali:

dx(E(0*))  dx(E(0%)) dcost* 1 1

E) = = i
P(E) dE d cos 0* dE 2 vy PBp*
———— —
1/2 1/(vBp*)

In ogni caso, p(E) ¢ la pdf delle energie delle particelle generate dal decadi-
mento di una particella con spin nullo. Essa & definita nel dominio costituito
dall’intervallo [Erin, Frmaz], con Epi, = Y(E* — Bp*) € Epmae = 7(E* + 8p*).
Verifichiamo che sia ben definita, ossia che 'integrale sul suo dominio sia pari
a l:

Emazx Emaz 1 1 1
p(E)dE = / SAE = o——(Epar—Emin) = S(VBp"+Bp") =1
Consideriamo ora il caso speciale di un decadimento in due masse uguali: Decadimento in due
M — m+m. masse uguali

Riscrivendo le equazioni [T}, o], [6] con my = ms = m:

—x —x * * * M? * * M *
pr+p5=0; |pi|=Ip3:=p :\/T—m2§ E1:E2:?3:E (8)

Da cui:

* *

* *_p _2p R *
Bi=fi=1m =7 =0

Sia ora 67 l’angolo d’uscita della particella a-esima nel sdr del CM. Scompo-
nendo la quantita di moto lungo gli assi e passando al sdr del laboratorio si
giunge a:

Doz = Y(p* cos O + BE*);  pay = p*sinb
Da cui:

Pay p*sin b sin 07 sin 6%
tanf, = —2 = ( 9+5E): - = 3
oz * cos oy, * S * .
P 7P 7<c089;+5*> 7(0086’04—1-696)
p

In (*) si effettuata la sostituzione p* = p*/E* = 1/p* = E*/p*.
Definendo 'angolo 8* = 07, poiché le due masse sono emesse lungo la stessa
direzione in versi opposti (nel sdr del CM), valgono le relazioni:

sin ] = —sin 6 :=sinf*; cosf] = —cosf; = cosh*
Da cui:
sin 6* — sin 6* sin 6*
tan ¢ = © tanfy = —
¥ (COS 0* + 6) v <— cos 0* + 5) v (cos 0 — B)
eh g eh
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Consideriamo ora ’angolo # = 6; — 6, formato dalle direzioni d’uscita delle due
particelle (nel sdr del laboratorio). La formula di sottrazione delle tangenti ¢ Angolo tra le parti-
data da: celle

tan ¢ — tan 0
tan 0 = tan(f; — 6,) = 1+ taln 6, tan ;2

e applicandola alle tangenti in [0

3 * * ﬁ 3 * 3 * * ﬁ 3 *
sin 0" sin 0" SU° — & sin 6 S 5 sin 6
- 2
v (COS 0"+ %) v <cos 0* — B) v (C032 0" — %)
tan§ = - g = - =
14+ S 72 (0082 0* — ;2) + sin? 6
~2 (C082 0 — %)
62
2 2 9* _
v (cos 5*2>
2 sin 0* 0"
- — sin
_ g ! _ By _
2 62
72 [cos2 0 — 5 + sin?0*(1 — 62)] [1 ~ 57 (2 sin? 9*]
23 p
A —sing” — sin 0"
_ lﬁvl — :‘25571 - f(0) D
(32 [—ﬁQ—i—B*z—l—sm 9*] sin 0*+ﬁ*2 o
che riscriviamo per semplicita come:
2
. A=
Asin 6* B3+
0") =tanf = ———; v
fE) =t =Gmp g Y, 11
g B

Passiamo ora allo studio della funzione f(6*).

Il denominatore si annulla per sin?§* = —B, che ha soluzione solo per —1 <
B < 0, dove si avra 6* = arcsin(4v/—B). La funzione si annulla per sin §* = 0,
ossia per 0* = 0,7 (definendo 6* tra 0 e 7, e quindi ignorando la periodicita).
Calcoliamo le derivate prima e seconda:

_ Acos#*(B — sin®6*)

S0 = =5 2oy o
71(0") = _wﬁ% [BZ + 6B cos? 0* — 2sin? 0* cos? 6* — sin* 9*} (11)

Cerchiamo ora i punti stazionari. La derivata prima si annulla quando cos 6* =
0, ossia per 0* = /2, oppure quando B = sin? §*, cosa che succede solo per
0 < B < 1. Concentriamoci sul primo caso.

Detto 6 (sdr laboratorio) il valore per cui si ha 6* = 7/2 (sdr del CM), calcol-
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iamo il valore che la funzione assume in tale punto:

9 2
™) _ -~ A BB* B BB* v B
tan<9<2>)tan(e)l—|—31+< 1 _1) _ﬁ*2ﬁz+52_ﬁ*2 -
B* 62 B*252
2 B 2" _op
V(B2 =B+ 8752 /e g (1 g?) ) < B )
L P o
dove in (¥) si ¢ usata la sostituzione 1/9* = (1 — %), per poi spezzare

la frazione e giungere al risultato finale. Notiamo che, poich¢ A > 0 per
definizione, il segno di tan @ ¢ determinato da quello di B, tramite:

B< -1 &<tanf <0

B>—-1 & tanf >0

In particolare B < —1 se:

5*2 5*

1 1
2 <
/y /y

R
E per B=—1siha g =3"/y. B

Si puo semplificare la formula ottenuta per tanf ricordando la formula di
duplicazione della tangente:

<-1= 2B < 528" = g7 (1-p) < -2 = B2 <

a
2tan —
tano = —— 2 (12)

1 — tan® @
2

E osservando che il risultato per tan 6 ha la stessa formula del secondo membro
di [I2] si ottiene per confronto:
P = # = 2arctan Bﬂ (13)

tan — = —
7B y

N | D)

Verifichiamo la tipologia di estremo calcolando la derivata seconda in 6:

_ A

10 =~ B0 =~ B

Di nuovo, il segno dipende solo da B, e si ha:

B<1 < f'(6)>0= 0 min

B>1 < f"(f) <0= 0 max
In particolare, B < 1 se:
1 1 2 2 2 ox2 2 #2 #2 2 %2 * %
G g <1< B = 7 (1-p") < B :$?<6 = B < B

Francesco Manzali, Giugno 2018
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econ B =1sihafg=p""

Concentriamoci ora sull’altro caso in cui la derivata prima puo annullarsi, e
cio¢ quando B = sin?#* (che si verifica solo per 0 < B < 1). Definiamo
I'angolo  come Pangolo a cui cio si verifica: B = sin? ;.

Il valore della funzione in 6, ¢ dato da:

Asin0; A 1

tan(6(65)) = 2sin2 0 2sind BB sinb;

Per come abbiamo definito 6y:

T 1 s -p”

s b
sinty = /= =

g B BB

E sostituendo nell’espressione di sopra:
1

1
B =B RRVACEE
Esaminiamo anche qui la tipologia di estremo calcolando la derivata seconda:
Asin 6

8 sin? O

tan 6y = = 6y = arctan

1"(6o) = (4sin? 0} cos® 0*) < 0 = 6, punto di max
Riepilogando, ricordando che per —1 < B < 0 la funzione presenta asintoti, e
che per B = 0 si ha §* = (3, vi sono quattro sezioni principali in cui studiare
la funzione tan 6:

1. B < —1 (B < */7): nessun asintoto, # ¢ un punto di minimo globale

2. -1 < B <0 (8/y < < B*: due asintoti verticali, § & un punto di
minimo locale

3. 0< B<1(p*<p < p*"): nessun asintoto, 6 & un punto di minimo,
mentre ¢, ¢ massimo globale

4. B> 1 (B > p*y*): nessun asintoto, 6 ¢ un punto di massimo globale

In tutti i casi la funzione si annulla in 0 e 7.

1.1.1 Angoli tra particelle: riepilogo e qualche intuizione

Nella figura di seguito sono riportate quattro coppie di grafici, ciascuna
delle quali si riferisce ad uno dei quattro casi appena discussi.

A sinistra si ha il grafico della funzione tan 6(6*), ossia dell’andamento della
tangente dell’angolo, misurato nel laboratorio, compreso tra le traietto-
rie delle due particelle dopo il decadimento. Tale tangente e graficata in
funzione di #*, che ¢ I'angolo che una delle due particelle prodotte forma, nel
sistema di riferimento del CM, con la direzione di volo (ossia la traiettoria
della particella originale che si decomposta)ﬂ

4La scelta di quale particella considerare per §* & arbitraria e irrilevante, visto che le due
particelle hanno la stessa massa: I'angolo dell’altra sara quindi univocamente determinato
(e pari a w4 0* nel sdr del CM). Cio si osserva nella simmetria dei grafici di sinistra rispetto
a0* =m/2.

Francesco Manzali, Giugno 2018
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0<B<l1 —-1<B<0 B < —1

B>1

Angolo 0*
™ 3m

2 4

ey

™ Circonferenza goniometrica

B=04; B* =05 B=—2.25

— ‘ tan 6(6")

B =047 3 =05 B=0.53
100 |

50 +

-100
——  tan6(0")

= *

2arctan —

Za VB

=0.53; f*=0.5; B=0.39
s B=05% 5 =05

3.0 -
25 ¢
2.0 ¢
1.5 -
1.0 |-

2.0
- ——  tand(¢")

arctan

B=0.T1; f*=0.5 B=2
1.50 -
1.25
1.00 |
750 |
5.00 |
2.50 |

tan6(6")

2arctan —

Za VB

77‘T 3T
2 4
Angolo 0*

w3
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Se consideriamo 6 € [0, 7], allora i valori negativi di tan corrispondono ad
angoli tra m/2 e m, mentre quelli positivi ad angoli piu piccoli, tra 0 e 7/2.
Con ragionamenti simili si possono rappresentare i range di § possibili su una
circonferenza goniometrica (o meglio, semicirconferenza visto che consideriamo
0 € [0, 7]), e questo & cio che & stato fatto per ottenere i grafici a destra.
Per esempio, nel caso B < —1, tan# assume valori negativi (che corrispon-
dono a 6 > 7/2), che vanno da 0 (corrispondente a # = ) fino ad un minimo
quando * = /2, ossia quando 0 = 6. Percid gli angoli osservabili nel sdr del
laboratorio saranno quelli tra 6 < 6 < 7: ossia le due particelle non possono
essere emesse con un angolo compreso inferiore a 6.

Analogamente avviene nel caso —1 < B < 0: qui il grafico di tan @ copre tutti
i numeri negativi, quindi ogni angolo 6 tra 7/2 e 7 ¢ ammesso. Non copre pero
tutti i numeri positivi: c¢’¢ anche qua un angolo minimo tra le due particelle
generate, sempre corrispondente a 6* = /2 e § = 0.

Tutto cio ¢ ragionevole e non sorprende. Per B < 0, infatti, § < 5* (dove g in-
dica la velocita della particella originale nel sdr del laboratorio, e 5* quella delle
particelle prodotte, misurata nel sdr del CM), per cui non si ha produzione in
avanti. In altre parole, una particella che viene generata “all’indietro” rispetto
al CM appare lanciata all’indietro anche nel laboratorio. Classicamente & come
sparare un proiettile da una macchina nella direzione contraria al moto: dal
punto di vista di un osservatore a terra il proiettile ¢ rallentato rispetto ad un
lancio da fermi (in quanto la velocita dell’auto si sottrae a quella del proiet-
tile), ma in maniera non significativa, e quindi procede comunque in direzione
contraria a quella del moto della macchina’l Questo significa che un angolo
di m ¢ sempre osservabile: corrisponde al caso di particelle generate lungo la
direzione di volo (una all’indietro e una in avanti), e infatti lo ritroviamo in
corrispondenza di 6* = 0 e * = w. Allora intuitivamente I’angolo # minimo
sara quello corrispondente, nel CM, a particelle generate lungo la direzione
perpendicolare a quella di volo: e infatti esso corrisponde a 6*.

Dal punto di vista fisico, i casi B < —1 e —1 < B < 0 sono equivalenti, nel
senso che in entrambi si ha un angolo minimo tra le due particelle. Per B < —1
quest’angolo minimo (#) & > 7/2, mentre per —1 < B <0 ¢ < W/2.E|

Nei casi restanti vale B > 0, ossia si ha produzione in avanti. Qui si ha
£ > p*, per cui e la velocita della particella iniziale che domina: € come lan-
ciare una palla all’indietro da una Ferrari in corsa, gli spettatori vedranno

5Tale paragone classico funziona anche nel caso di velocita relativistiche finché ci limi-
tiamo a parlare del segno della velocita composta e non del suo modulo. Infatti, se v & la
velocita di trascinamento tra due sdr inerziali, u, la velocitd di un corpo nel primo e u/,
quella nel secondo, la trasformazione relativistica ¢ data da u), = (uy — v)/(1 — vug/c?).
Qui il denominatore & sempre positivo, in quanto si ha u,,v < ¢, percio il segno di u/, &
unicamente determinato dal rapporto tra u, e v. Percio chiaramente “sottrarre le velocita”
porta ad un risultato numericamente sbagliato, ma di segno giusto.

6Nota: 6 decresce man mano che B — 0, ma solo fino ad un certo punto. Per curiosita,
¢ possibile portare § a 0?7 Fissato B = 0 si ha 8 = %, per cui § = 2arctan(1/y). Possiamo
quindi aumentare v, ma nel farlo, per mantenere la possibilita di produzione all’indietro,
dobbiamo agire sull’energia cinetica delle particelle prodotte, che & proporzionale alla dif-
ferenza tra la massa iniziale della particella che decade e la somma delle masse risultanti.
Per una differenza molto alta (potenzialmente infinita), ossia per particelle prodotte molto
veloci, si ha § — 0. Cid corrisponde ad una situazione (molto strana) in cui tutti gli angoli
sono possibili, per cui a volte le particelle escono in versi opposti, e a volte (quasi) nello
stesso verso!
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una palla lanciata in avanti - seppur piu lentamente. Risulta quindi sempre
possibile osservare un # = 0: cio corrisponde a due particelle generate sulla
direzione del moto, entrambe “in avanti” (con una molto piu lenta dell’altra,
naturalmente).

In particolare, il caso B > 1 e simmetrico di quello B < —1: qui stavolta il caso
delle particelle lanciate perpendicolarmente alla direzione di volo massimizza
I’angolo.

Piu interessante, invece, e il caso 0 < B < 1, dove sono presenti due massimi
nella funzione tan 6. Il caso 6* = m/2, delle particelle emesse perpendicolar-
mente, non corrisponde al § massimo, ma ad un minimo locale dell’angolo
(molto vicino al massimo globale per B — 1). Cosa sta succedendo?

La motivazione e da ricercare nelle formule di trasformazione delle grandezze
relativistiche. Nel passaggio dal sistema di riferimento del CM a quello del
laboratorio, il momento lungo & aumenta. E questo il motivo per cui, rappre-
sentando tutti i possibili momenti osservati su un piano (p,,p,) si ottiene un
ellisse (come visto in ([7))) e non una circonferenza (come accade nel caso new-
toniano). Intuitivamente cio ha a che fare col fatto che ¢ ¢ una velocita limite,
per cui quando si € molto vicini a ¢ e necessario aumentare di molto il mo-
mento per aumentare di poco la velocita, e per arrivare a ¢ servirebbe portare
il momento allinfinitd’] Tale “dilatazione” del momento lungo la direzione
del moto ha un’importante conseguenza riguardo agli angoli. In genere, se
una delle due particelle viene prodotta in direzione prossima alla linea di volo,
I’altra avra una componente lungo y piccola, e percio subira in pieno D'effetto
di “dilatazione” del momento, venendo lanciata quasi perpendicolarmente alla
direzione di volo. In un certo range dei parametri tale effetto domina e produce
un angolo massimo tra le due particelle (come calcolato).

Per avere una maggiore intuizione dei risultati ¢ possibile giocherellare con
i parametri tramite un apposito Notebook di Mathematica disponibile qui:

https://drive.google.com/open?id=14PsiQwlnCtQpnsp0lil jkQV5xkWRbeHr.

1.2 Urti

Con urto intendiamo un processo in cui due o piu particelle interagiscono
tra loro, scambiandosi momento o scomponendosi per generare una cascata di
particelle differenti.

Si parla di urti elastici se le particelle finali hanno la stessa natura di quelle
iniziali (ossia se I'unico effetto dell’'urto ¢ lo scambio di momento), mentre gli
urti anelastici sono il caso piu generale in cui cio non avviene.

Sono detti urti esclusivi quelli in cui si € a conoscenza della natura di tutte
le particelle iniziali e finali, mentre sono inclusivi quelli in cui mancano delle
informazioni sulle particelle finali.

Trattiamo brevemente il caso di un urto anelastico: 1 4+2 — 3+ --- 4+ N.

"E un po’ come se la massa dell’oggetto aumentasse. Tuttavia questo concetto di “massa
relativistica”, seppur popolare in passato, ¢ caduto in disuso, in quanto abbastanza sco-
modo e generatore di fraintendimenti - per esempio non e chiaro quale sia il rapporto tra
questa grandezza e la massa gravitazionale. Lo riporto qui per completezza (e per aiutare
I'intuizione), ricordando che per “massa” in relativita si intende la massa a riposo, che ¢ un
invariante.
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Come nel caso dei decadimenti, si ha la conservazione dell’energia:
Ei+FEy=FE3+---+ Ey

e del trimpulso:

P1+Pp2=Dp3+ -+ DN
Ovviamente si conservano gli invarianti scalari, come la contrazione del quadrim-
pulso p*p,, o i prodotti pseudoscalari tra quadrimpulsi p; - p;:

pi-p; = EiEj—pip; > EEj— |pi| |pjl > EiEj— B} —mi \JEZ —m3

dis. Schwarz J
(14)
Partendo ora dalla disuguaglianza:
mleJQ + m?Ef —2m;m; B E; + m?mf + Eij > m?m? + Eij
(BiEj — mim;)* > B (E; —m3) —mi(E} —m3)
(EiEj — mimy)?* > (B} — m3)(E} —m3)

e completando la catena di[l14|con il risultato appena ottenuto in (15} si ottiene:
Pi - pj = mymy (16)
Definiamo ora la grandezza massa invariante come: Massa invariante

Wi=s=(pi+pt - +py)'=pi+p+ - +px +2> pip;
1<j
N
(Z) domi +2 mamy = (ma+my+ o+ my)’
*) i=1 iJ

dove in (x) ¢ stata usata la relazione |16| appena ricavata.

In un urto la massa invariante rappresenta la massa “disponibile” per creare
nuove particelle.

Esaminiamo il caso di una particella 1 che si scontra con un’altra particella 2
inizialmente ferma rispetto al sdr del laboratorio. Indicando con l’asterisco *
le grandezze relative al sdr del CM come al solito, i quadrimpulsi sono dati da:

pT = (Efap*aoa()) P1 = (ElapbOJO)
p; = (E;7 _p*aoa O) P2 = (mg,0,0,0)

Da cui e possibile calcolare le masse invarianti:

W? = (Ef + Ey)* = W = E} x +Eyx (Dal sdr del CM)
W = \/(E1 +mg)? — pi = \/m% +m3 +2myoE;  (Dal sdr del labo)

Per lo stesso sistema, naturalmente, i due calcoli daranno risultati identici (W
¢ invariante). Tuttavia notiamo che nel sdr del CM W ~ Ej, mentre nel sdr
del labo W ~ /FE;. Percio, se si dispone di un acceleratore capace di produrre
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particelle ad un energia massima fissata F;, conviene far scontrare due fasci

opposti (come “visto” dal CM) rispetto a far scontrare un fascio contro un

target fisso (come “visto” dal labo), poiché nel primo caso 'energia disponibile

a produrre nuove particelle e notevolmente superiore.

Vi sono altri invarianti, detti invarianti di Mandelstam. Dato un urto Invarianti di Mandel-
1+ 2 — 3+ 4, detti i quadrimpulsi p; + ps — p3 + ps4 si ha: stam

W? =s = (p1 +p2)2 = (ps +p4)2
t=(p1—ps3)* = (ps—p2)°
U= (p1 - p4)2 = (]93 - p2)2

1.3 Urti elastici

Consideriamo piu nel dettaglio il caso di un urto elastico: 1 +2 — 1" + 2/
Poniamoci nel sdr del CM. I quadrimpulsi prima dell’urto sono:

da cui la massa invariante:
s= (0 +p3)? = (B + By)? = (\m} +p* + ym} +p°)?

Dopo l'urto, posto il quadrimpulso [p*'| = [pi| = p*, dalla conservazione
dell’energia si ricava che:

E{+E; = By +E; = \lm} +p=+\/mj +p* = \/m} +p*2+\/m3 + p2 & p* ="

Poiché il quadrimpulso rimane lo stesso prima e dopo 'urto, anche le singole
energie (misurate nel sdr del CM) saranno uguali: Ef = E} e Ej = E} .
Detto 6* = 67 = 6; — 7 'angolo d’uscita della prima particella, si possono
scrivere i quadrimpulsi dopo 'urto come:

p>(1(l - (Eiklvp* COS 0*7 p* sin 9*, 0)7 p;, = (Ejv _p* COS 9*7 _p* sin 9*7 O)

Calcoliamo quindi la massa invariante:

’ ) 9 2 2
sem = (P +p3) Z(\/m%p* +\/m§+p*> (17)
e il secondo invariante di Mandelstam:
to = (p; — p§)2 = (E’Q“/ — E5, —p*(cos* — 1), —p*sinf*,0) =
= (B — E3)? —p* (cos 0" + 1 — 2cos? 6" + sin? 6*) (18)

0 —2p*2 (1—cos 6*)

percio t = —2p* (1 — cos 0*).
Passando al sdr del laboratorio, dalla conservazione dell’energia si ha:

E1+m2:E1+Eé:> Ei_El :mg—Eé
Calcoliamo la massa invariante:

Stab = (P14 p2)® = (E1 4 ma, p1,0,0)* = (B + ma)” — pi =
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e il secondo invariante di Mandelstam:

tiay = (Py — p2)* = pgl + 3 — 2py - p2 = mj + mj — 2E)my =

Possiamo ora sfruttare l'invarianza di s ed eguagliare i risultati ottenutin in

07 e IO

2
(\/m% +p** + \/mg +p*2) =m: +mj + 2myE,

= 2p* —l—%%—%&—l—Z\/ml—kp \/m + p = %—F%—i—ngEl
—\/m1+p \/m +p** = myEy —
5 = (" +m1)(p —{—m2) :m2E12—|—p —2p*2m2E1 =
=" p k) il = i 4 = 2 oy
’ m3(E} —mi)

Uguagliando invece i risultati ottenuti per ¢ in [I§] e 20

%2

Imy(E, — Ey) = —2p* (1 — cos %) = E| = By —

(1 —cos ) (22)

mg
Il valore minimo e per cos#* = —1, e il massimo per cos 6* = +1:
Ei mar El (23>
2
2" E2 — m2
Eimm _ E1 o b _ E1 _9 2m2< 21 ml) — (24>
mo (1) my + m5 + 2mo by
_ E1(m3 4+ m3) + 2mima (25)
m% + m% + 2m2E1
Esaminiamo ’energia cinetica, T'= E — m, nel caso minimo:
E 2 2) 1 92
Tll ,min 1(77;1 - TZ2> ks T —my = (26)
my +ms5 + 2mo by
B 2mimy + Ei(m2 +m3) —mymi — mam; —2mimyE, B
B m2 + m3 + 2my By N
(m1—m2)?
B Ey(my — mo)? — my (m] + ma — 2myms) B
B ml + m2 + 2m2E1 N
_ (By —mq)(mg — m2)2 (27>

m3 + m3 + 2my Ey

La frazione di energia cinetica rispetto a quella iniziale ¢ percio:

Tll min 1 M(ml _ m2)2 _ (ml B m2)2 (28)
Tiniz M m% + m% + 2mo by m% + m% + 2moq By
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Nel caso classico, imponendo la conservazione dell’energia e del momento tra
i momenti appena precedenti e successivi all’'urto, si ricava:

/ 1 2 2 2
oo e N 7 gmvf (my —my) (my —ms)
1= 1 1 2 - 2 2
my + Mo Tiniz  zmavi  (mi+mg)?  mi+m3 + 2moling

(20)
Si ha percio una differenza fondamentale (evidenziata in verde) tra la[28 e 1a[29}
non ¢ solo la massa delle particelle a partecipare alla frazione di energia cinetica
della prima particella, ma anche I’energia che essa aveva prima dell’urto. In un
caso estremo, se E; > my > my (particella leggera ma molto energetica), si
ha che T7"/T;, — 0, mentre la formula classica darebbe un risultato 7"/T;, —
1. Classicamente, una particella leggera che sbatte contro un muro rimbalza
mantenendo circa la stessa energia cinetica di prima, ma se essa viaggia ad una
velocita relativistica ¢ possibile che trasmetta tutta la sua energia al muro e lo
metta in moto, fermandosi di conseguenza (stiamo ammettendo una particella
che abbia - in sé - un’energia cinetica maggiore dell’energia di massa - altissima
- del muro).
Esaminiamo ora gli angoli risultanti dall'urto, misurati nel sdr del labora-
torio. Similmente al caso dei decadimenti, partiamo ricavando le componenti
dei quadrimomenti nel sdr del laboratorio tramite le trasformazioni di Lorentz:

Pow =V Py + BEL) =(p cos O, + BEL);  pl, =p sind; a=1,2
Riarrangiando i termini:
pi)&,x * * * / * _: *
— BE, | =p cosb,; p,,=p sinb,
f‘)/ K
Elevando al quadrato e sommando membro a membro:
l(p’ _67E*>2+p/2 :p*2:>;(p/ —ﬁ’yE*)Q‘i‘pgy:l
v a,T « a,y (’}/p*)2 a,T « p*2
ossia l'equazione di un’ellisse sul piano (pa.z, Pay), di semiasse lungo x s, = yp*,
e con centro in (d = ByE,0).
La condizione di produzione in avanti si ha per:
d> s, = ByE: > yp* :>B>E*,:6;';' (30)

Se la particella 2 ¢ inizialmente ferma rispetto al sdr del laboratorio, allora i
quadrimomenti saranno:

b2 = <m2707070); p; = (Ega _p*voao)

Applicando le trasformazioni di Lorentz a p3:

p;’ = (pu - EQ) = —yBmg = p* = myypB (31)

—p* 0 m2
Sostituendo [31] nella condizione di produzione in avanti [30;

may 3
E¥

«

g >

= E* > YMma
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Nota: il risultato ottenuto in[31] ¢ coerente con la formula[21] Infatti, tenendo
conto che:

Ptot b1 2 1 2 2 2
B Ey o + 4 Y 1— 32 b1 1 1
si ha:
o D
2 27 oo
.2 B
p* =myy*B* = mj _ (e

1-62 (met+ B’ —pi

M
it _ mEemd) [
m3 + Ef +2meEr —pt m3 + B2 4 2me By — B +m3
Esplicitiamo la relazione di produzione in avanti per le singole particelle. Per
a=1:

/ 2
EY > qmg = \/m? + S vy < m2 4 (Bymg)? > 7 m2
1 yme 1T D Y 2 1+ (Bymy) L
m} > mi(1L—81) = mj

ossia si ha produzione in avanti se m; > ms.
Per a = 2:

2
EY > ymy = \Jm3 + p” > ymy m3 + v?B%m3 > v m3

= > ) = = 02, =

ossia la particella 2 (inizialmente ferma) non potra mai essere emessa ad un
angolo maggiore di 7/2 (cosa che equivarrebbe a dirigersi nella zona da cui la
particella 1 & arrivata, rompendo percio la conservazione del momento).

2 Elettromagnetismo covariante

L’obiettivo e ora quello di riscrivere le equazioni dell’elettromagnetismo in
forma manifestamente covariante, ossia tramite relazioni tra quadrivettori che
trasformano tramite Lorentz.

Prima di procedere, tuttavia, conviene adottare delle unita di misura piu
agevoli per le considerazioni di fisica fondamentale. Le unita del Sistema In-
ternazionale, infatti, sono nate per semplicita sperimentale: contengono cosi
diverse arbitrarieta che portano a diverse costanti fastidiose in mezzo alle for-
mule.

Per esempio, l'unita elettromagnetica fondamentale del SI (sistema MKS,
metro-kilogrammo-secondo) ¢ I’Ampere: tale scelta risiede nel fatto che le cor-
renti sono facili da misurare in laboratorio, e percio conviene partire da esse
per definire tutto il resto (cosa valida ancor oggi, e a maggior ragione due secoli
fa). L’Ampere ¢ definito come la corrente che se fatta scorrere attraverso due
fili paralleli posti a 1m di distanza 1'uno dall’altro nel vuoto genera una forza
tra di essi di modulo 2 - 107N per unita di lunghezza.

Scrivendo tale legge come: o
P _ s

I 2r d
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si giunge a definire la costante di permeabilita magnetica del vuoto
pto = 410778 Perché 2-1077? Perché il 2 si semplifica in diverse formule, e
con il 1077 si rientra nell’ordine di grandezza dei fenomeni (celle elettrolitiche,
prime batterie) che venivano osservati all’epoca. Anche la definizione di pqg
segue da ragionamenti simili.

Tale semplicita di misura in laboratorio, tuttavia, parte da una scelta che ¢
completamente arbitraria, che avra conseguenze sul resto delle equazioni.
Osservando infatti che ¢ = i/At, I’Ampere porta alla definizione del Coulomb.
Tuttavia, per la scelta fatta prima, la legge di Coulomb dovra per forza con-
tenere un fattore di proporzionalita, che chiamiamo k,:

0192 1
F=k—; k, =
72 4rreg

dove la costante dielettrica del vuoto ¢y = 1/c2.
Quando vogliamo andare a fare considerazioni di fisica fondamentale, tuttavia,
si riscontrano due problemi:

1. Tenere €, pig e c € ridondante, in quanto non sono quantita indipendenti.
Cio non fa altro che sporcare le equazioni. Di piu: €y e ug, pur essendo
costanti di proporzionalita, hanno unita di misura, cosa che e poco ele-
gante e fa confondere di piu. Cio potrebbe essere giustificato se fossero
davvero costanti fondamentali della natura, ma non lo sono: sono solo
artefatti di una scelta che e stata necessaria per semplificare la presa dati
in laboratorio.

2. Lo studio della relativita portera a concludere che campo elettrico e mag-
netico sono due aspetti dello stesso fenomeno. Tuttavia, ’arbitrarieta del
SI non ci permette di notare ad occhio questa simmetria.

Queste considerazioni portano all’introduzione delle unita di Gauss, che
fanno parte del piu esteso sistema C'GS (centimetro-grammo-secondo). Os-
serviamo subito le conseguenze sulle equazioni.

Le equazioni di Maxwell (includendo la forza di Lorentz) assumono nel sistema
MKS la seguente forma:

S Ps = J =
V-FEg="— VxFEs=——B 32
5 €0 § ot ° (32)
L. L. L 10 -
. Bo = Bg = ——F
\Y% S 0 V x S ,u()JS + 20t S
ers(ES+Q7X Bs)
Nel sistema di Gauss, invece, si riscrivono come:
V-Eg=4 V x E L0 5 (33)
. =47 - -
G PG G cot ¢
\Y% BG:O V X GZIJG *fEG
c c ot

Dimostriamo, innanzitutto, ’equivalenza tra le due scritture, e motiviamo i
passi che portano da una all’altra.
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L’idea di base del sistema di Gauss e quella di modificare 'unita di misura
della carica in modo da rimuovere il coefficiente k. dell’equazione di Coulomb:

- 1 01 G-
F 4192 N 4192
dmey 12 72
Detta eg una carica misurata in Coulomb (sistema MKS) e eq il suo equiva-
lente nel sistema di Gauss (misurato in una nuova unita che chiamiamo Stat-

coulomb), si ha percio:

€s pPs . Js
-2 — . — . E~ = /4 E
€a Tren % = PG Tmer 60; Jac Tre. 60, e TEgLLs

(la modifica si propaga naturalmente su tutte le unita di misura derivate).
Da k. = 1 segue che ¢ = 1/(47), ed ¢ un numero puro. Sostituendo nella
relazione di ¢ (che manteniamo invariata per definizione nel sistema di Gauss):

9 1 4m 4m
Ho€o Mo Ho
Nota: qua c non contiene unita di misura, in quanto pg ed €y sono, nel sistema
di Gauss, numeri puri.
Abbiamo ora tutto il necessario per ricavare la modifica dell’'unita del campo
magnetico:

B 5 Fe  Bs o 1
N ]Sl5'7 ¢ I(;lG BG B ]5' N \/477'60

Utilizzando la relazione tra c, €y e po:

BS = BG = 4/ 47T€()BS

1 47 14n
€0=—5=>Be=/—F5Bs=-—
HoC HoC £ 1o
Spostiamo ora il fattore ¢ a tutte le equazioni che contengono il campo mag-
netico, lasciando come trasformazione:

4
BG = jBS = CV 471'6035
Ho

Per lo spostamento di c, la legge di Lorentz diventera, di conseguenza:

—

ﬁ = 65(55 + U X gg) = es(ES —|—% X (Cgs))

e ora basta semplicemente sostituire le altre relazioni:

—

Eq v
C

ﬁ = \/471'606@ (\/m +
0

Bg )
X (———
V AT/ o
Il campo magnetico B ¢ definito dalla relazione F = Bl = B = F/(I1).
Poiché la ridefinizione della carica ha permesso di eliminare gli ¢, da ogni

equazione, la relazione di sopra permette di rimuovere anche i p, lasciando
solo c.
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Partiamo quindi dalle equazioni di Maxwell nel sistema di Gauss e, applicando
le sostituzioni appena visto, riconduciamole alla forma del’MKS:

ﬁ-EG:4WpG:>\/47Teo§-ES:47T ps :>6-E‘S:p—s (34)
47eg €0
V'BG:O:>“fV'BSIOZ>V'BS:O (35)
. 10 = 1 /47w 0 0 =
VxEg=—-2By= VareV x Bs = - | ~ L By = V x Bg = —2 B
cot c\ po Ot ot
(36)
" dr > 10 = 47 > 47T 1
= — -—F, B —_—— \/4 E
V x Bg Jg—l-cat G = VX \/ﬁ 7T€0 S =
[ 2
— — MOEO 18—*
=V X Bg = «/ E = V x Bg = poJ
X Dg \/5 Hocom, s X Bs = pods + — Qat
(37)

F =

U 47 - v -
V4 E - Bg | = FE — B 38
m( €y s+ X“uo s) 65( S+C><(C S)> (38)

2.1 Potenziali

Il primo passo per ottenere una scrittura covariante e riscrivere le |38 mediante
potenziali.
Si definisce potenziale vettore A la quantita:

Op2 Az — 0,3 A
B - v X A(f7 t) = adil - (9x1A3
5’x1A2 - 8:22141

Sostituendola nella I1I eq. di Maxwell si ottiene:

S % B4 1§v g:o;ﬁx<*+1%>:o

(si e sfruttata la proprieta per cui il rotore di un gradiente é nullo). ¢ & detto
potenziale scalare, e consente di giungere alla scrittura:

EFE=———A-Vp— E =——A"— —
cot 7 0xY Di”
Si nota che i potenziali non sono univocamente definiti. Infatti, detta y una Trasformazioni
funzione scalare qualsiasi, si possono definire dei potenziali trasformati: Gauge
A= A4+ Vx(Zt); ¢ =¢p— lﬁx(f t)
o cot™’

che generano gli stessi campi E e B:

Francesco Manzali, Giugno 2018 22

di



Tali trasformazioni sono dette trasformazioni di Gauge.
Definiamo allora il quadripotenziale elettromagnetico A" = (p, A). Pos-
siamo riscrivere le trasformazioni di Gauge per il quadripotenziale come:

A,OZQD,: _lal
At = A — Oy = LT 5
A’i:Ai—ﬁiX:Ai+8ix:Ai+%x

Possiamo ora definire il tensore del campo elettromagnetico F*¥ come:
¥ = gAY — 9V A+
Osserviamo subito che si tratta di un tensore antisimmetrico:

Fl“’:aﬂAV_aVAH:_(aVA#_aHAV):>F/L1/:_FV,U,

Fow

Inoltre le componenti sulla diagonale sono ovviamente nulle. Se i = v, infatti:
Fr =09rAY — OVAF =AY — 1AM =0
Esaminiamone le restanti componenti:

dp 10 ,
. __ A = F°
ort cot

FO=0A"-0°A" = — 82. A — A" =

Esplicitando gli indici:

FOY=F'=EF, .=F;; F*=F"? = F, := Ey; FO=F3=F, :=E4
Nota: i termini F,, Ey, F5 sono introdotti per comodita di notazione, e non
sono le componenti di un ipotetico quadrivettore covariante del campo elet-
trico (che non esiste, in quanto E & un trivettore). Analogamente si avra per
B17 B27 B3'

Esaminando gli altri elementi:

F9=0'A — A

si giunge a:
F12=9'A2-9?A' = —9,A>—0,A' = —iAQ—i—iA1 = —(ﬁx ﬂ)g =B, =
Ox? Ox?

Analogamente:

F13 =043 - 9°A! = —iAB—i- iA1 = (6 X ff)g =B,= B,

Ox? ox3 Y
0 0 > o
23 _ 92 43 342 _ 3 2 _ _ _

Questi risultati possono essere scritti pili sinteticamente come F% = —e* B,
dove si fa uso del simbolo di Levi-Civita €%, per cui €'?® = 1, se vi sono indici
ripetuti ¢ nullo, e ogni scambio degli indici ne cambia il segno.
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In ogni caso, i risultati trovati bastano per risalire alla forma completa di F*
(i termini mancanti si ricavano sfruttando 'antisimmetria):

0 —-E, —-FE, —Fs
Ei 0 —By B
E, B 0 —B
Ey —By, B 0

P =

Dimostriamo ora un’identita del calcolo tensoriale che ci servira per ricavare
le equazioni di Maxwell omogenee.

Sia A,, un tensore antisimmetrico (vale A, = —A,, e S* un tensore sim- Contrazione di tensori
metrico (vale S, = S"*). Allora la loro contrazione ¢ data da: simmetrici e antisim-
metrici

A" = = A8 = — A = 245" =0 = A, 5"

Nel passaggio segnato () si e sfruttata una proprieta degli indici muti: poiché
A,,,S"" & una contrazione (cioe da origine ad uno scalare), essa non contiene
indici liberi (cioeé indici non ripetuti che compaiono in entrambi i membri
dell’equazione), ma solo indici muti. In particolare, il risultato di un’operazione
non dipende dal nome degli indici muti: per cui possiamo scambiarli senza
colpo ferire. Il che ¢ comodo poiché possiamo spostare tale risultato al primo
membro, ottenendo la conclusione (che risparmia la scrittura di 16 addendi).
Consideriamo ora la relazione:

€ppe D FP =0 (39)

da cui derivano le equazioni di Maxwell omogenee.
Prima di tutto dimostriamola:
€vpo0” FP7 = €00 (0P A° — 07 AP) = €,1,5,0" 0P A° — € por 999 AP =
_ vAap A0 __ v ,0 g _ vap A0 __
(:)e,wpa@@A EWJPOG AT =2€u,0 8SA =0
A

In (x) si effettua nuovamente il trucco di cambiare nome agli indici, scam-
biando p e . Notando poi che —¢ op = T€uw po (per come ¢ definito ) si

giunge all’espressione finale. Notiamo quindi che €,,,, € antisimmetrico (dalla
definizione), mentre 0¥0” A% ¢ un tensore simmetrico (si puo cambiare 1'ordine
delle derivate seconde per Schwarz). Ma questa ¢ esattamente la situazione
dell’identita tensoriale dimostrata poco prima, e che quindi possiamo appli-
care, completando la dimostrazione.

Esaminiamo ora, nel dettaglio, le componenti, partendo dal caso p = 0. In
questo caso vpo devono essere una permutazione dei valori 123 (abbiamo fis-
sato 1 = 0, e se ci fosse un indice ripetuto e sarebbe 0) e quindi le chiameremo
ijk, per la convenzione degli indici latini. In definitiva avremo percio 3! = 6
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addendi (numero di permutazioni di 3 elementi). Scriviamoli esplicitamente:

€0ijh0 FI* = €01930" F?® + €00310° 3 + €03120° F' 2+
+ 6013281}723 + 6021382F13 + 60321831721 =
(:) 2(60123311723 + €031 02 F3 + 6031233F12) =

(=Bs2) + (+1) 0

—2 (1)L (B + (+1) e

ox! 0x?
= 2V-B=0=V-B=0

—By)| =

Nel passaggio segnato () si attua uno scambio degli indici alla seconda riga, in
modo da trasformarla in una copia identica della prima e sommare in colonna.
Cio e dato dal fatto che sia F'*” che €,,,, sono tensori antisimmetrici, per cui,
per esempio:

€ 81F 23 — (—601 23 )(—F 32 ) — 60123F32

o1 32

ossia il primo termine della seconda riga si trasforma nel primo della prima
riga (e conti analoghi valgono per gli altri).
Per ricavare l'altra equazione di Maxwell omogenea ¢ necessario prima di-
mostrare un’altra identita tensoriale: Relazione tra Levi-
Civita e Kronecker
gkl )

Eijkze :—1-252,

Possiamo dimostrarla per calcolo diretto. jk possono assumere valori da 1 a 3,
ma non possono essere uguali (senno € = 0). Percio resteranno solo 6 addendi:

23l 321 131 121 i
+ €;32€ -+ €;13€ + €;31€ + €;12€ + 61‘21€Z

(1) (2) (3)

31 12

ikl __
€ijk€] = €;23€

(Si noti che gli indici i e I, essendo liberi, non partecipano alle somme)

Il termine (1) & # 0 solo se i = [ = 1 (altrimenti una delle due ¢ = 0 e il
prodotto si annulla). In tal caso si avra (1) = 2. Analogamente, il termine (2)
eparia2solosei=10=2¢e(3)=2seesolosei=1[=3,e0in tutti gli altri
casi.

Percio la somma finale sara nulla se ¢ # [, e pari a 2 in tutti e tre i casi in cui
i = [. Tale risultato & percio pari a 20!, ricordando la definizione della delta di
Kronecker.

Possiamo ora affrontare piu agevolmente i restanti casi di . Sia ora pu =
i = 1,2,3. Allora uno degli altri indici v, p,o deve essere 0, 0 avremmo una
ripetizione che annulla e. Abbiamo quindi 3 possibilita, e il risultato sara la
somma tra tutte:

v o __ 0 o v 1,700 14 0 __
Gi,/pga Fro = Eiopga Fr -+ Eiuoga F + Gi,/poa FrP =

Conviene ora effettuare uno scambio di indici in € (cambiando di conseguenza
il segno) in modo da portare lo 0 in prima posizione. I restanti indici vpo
assumono valori tra 1 e 3, quindi li chiameremo ijk. Usiamo poi il fatto che
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€oijk = €ijk per ridurre la dimensione di e.
= —Eoipo—aOFpU + eOiW@"FOU — EOinapro =
= —eijkﬁonk + EijkajF Ok — Eijkaijo =
= —GijkaOij - Ez'jkajF kIO — ez-jki?ijO = —eijké’Oij — 2€ijk8ij0 ==

dove abbiamo usato, nuovamente, ’antisimmetria di F*”. Ora sostituiamo le
componenti di F, osservando che F/* = —e/*B; ¢ F* = FE} (come ricavato
inizialmente).

= eijkejklaoBl — 2€ijk8jEk = 2558031 — 2€ijk8jEk (:) 2(51'[8031 + 2ez~jk8jEk =
=200B; +2(VXx E);=0=>V xE=—--_38

Nel passaggio segnato (*) si abbassano gli indici di 6!, 8° e 8, cambiando di
segno in ogni occasione. Chiaramente il primo termine non cambia di segno (—-
— = +), mentre il secondo si. Al passaggio successivo, l'effetto di moltiplicare
0;100B; € quello di annullare tutti i termini per cui [ # i, per cui alla fine
rimarranno solo le componenti B;. Il risultato segue ricordando la relazione
tra simbolo di Levi-Civita e prodotto vettore:

c:axbjci:eijkajbk

Prima di passare alle equazioni di Maxwell non omogenee ¢ necessario intro-
durre un nuovo quadrivettore: la quadricorrente, definita come:

Dimostriamo che si tratta di un quadrivettore.

Un qualsiasi sistema di particelle ha una carica ben definita, il cui valore ¢
definito come la misura ottenuta in un sdr rispetto al quale le particelle sono
in quiete. Cio fa si che la carica sia (come la massa) un invariante. Defini-
amo di conseguenza la densita di carica nel sdr in quiete py, pari al rapporto
tra carica invariante e volume da essa occupato (misurato nel sdr in cui le
particelle sono ferme). Nota: un altro sdr in moto rispetto al primo misurera
un volume diverso (per la contrazione delle lunghezze), e di conseguenza una
diversa densita di carica, che chiamiamo p.

Definiamo ora la quadricorrente come j* = pou* = v(v)(poc, pot), dove u* &
la quadrivelocita delle cariche in moto, e v € la loro trivelocita. La j* cosi
definita & automaticamente un quadrivettore (si tratta di uno scalare moltipli-
cato per un quadrivettore), e percio non ci resta altro che dimostrare che tale
definizione coincida con quella data precedentemente (j* = (c,o,j'). Vogliamo
ciod dimostrare che p = y(v)py e che j = v(v)po¥ = pt.

Consideriamo percio un volume infinitesimo di carica che si muove a velocita
v nel sdr del laboratorio. Poniamoci nel sdr del CM, dove le cariche sono
in quiete, e misuriamo il volume come V* = Azx*Ay*Az*, con una carica
totale che sara data da ¢ = poV*. Supponiamo che il movimento avvenga
lungo l'asse & per semplificare i conti, e passiamo ora al sdr del laborato-
rio. Per contrazione delle lunghezze si avra: Az = Az*/v(v), Ay = Ay* e
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Az = Az*. 1l volume nel sdr del laboratorio (dove le cariche sono in moto) &
quindi V = AzAyAz = V*/y(v), e la densita di carica diviene:

. q poV* B
P—V—T—W(U)Po
<7(v)>

che e proprio quello che volevamo dimostrare.

Per quanto riguarda j = p¥ basta applicare la definizione di densita di corrente.
Consideriamo la carica infinitesima di prima che attraversa un’area AyAz in
un tempo At. Allora:

= 1 pAzAyAz 1 Az |
A~ At Aya: APV

_,|

e basta moltiplicare ambo i membri per il versore parallelo alla velocita per
ottenere j = pv.
Le equazioni di Maxwell non omogenee derivano direttamente dalla relazione:
47
0, F" = ]

Esaminiamone le componenti. Per v = 0, sostituendo i termini di F*° = E, si

ha:
L oL 4 Lo
OuF" = 0, =V - == = 2¢p:»V-E=47rp O

Per v =1, invece:

0" = o F" + 0;F " = —0B' = 0;F V) = —QuE' + ¢7*0;B* =

10 _, - Y 47?—»
:_77Ez+ VXBZ g o
cot ( ) P ¢’
- 10 = 4mw-
=VxB—-—-——F=—j
cot ¢’
Dalla stessa relazione si puo ricavare I’equazione di continuita:
4 47
" = —j" = 0,0, F" = 0,—3" =0
& \,-/T C
S

dove si e usata l'identita vista in precedenza riguardante la contrazione di un

tensore simmetrico S e uno antisimmetrico A. Ma allora: Equazione di continu-
A o 1d d s ita
—0,j" =0=0,7" =0j° + 0;j' = —— = —p+V-7=0
O 7" =00j" + 0ij cdt(cp)+v J 7"
/—d7+/ﬁ-d7—0:>—+/ -nd¥ = Q:—gbg() O
de T dt

(Nell'ultimo passaggio si ¢ integrato sul volume totale 7 delle cariche e si e

applicato il teorema della divergenza, ricavando ’equazione di continuita in

forma integrale).

Manca solo ricavare ’espressione covariante della forza di Lorentz . Partiamo Forza di Lorentz

dalla contrazione:
[ _
F* u,u, =0

——
A g
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dove u, e u, sono quadrivelocita.
Definendo F* := kF*u,,, con k scalare, si avra:

Fhu, = EF*™u,u, =0

ossia F'* ¢ ortogonale alla quadrivelocita u,,. Tale risultato basta per affermare
che F* & un quadrivettord]
Con la scelta di k := e/c, si ha che 'espressione:

o= Cpuy, W
c ds
genera sia la forza di Lorentz che la legge della potenza.
Esaminiamone allora le componenti, partendo da p = 0. Poiché i termini sulla
diagonale sono nulli, avremo che v =17 =1, 2, 3:
€ i e ; ey, ey=
1):-F% . ==(-E)(—u')=-E~v'=—FE-
D)o Fu, =-(=EB)(-u") = "B v'= 5 E-7
dp® ~d& ~d
)i —==-——=—=-=C
) ds cdte c2dt
d - d -
(1) =(2): L S:QE-J:%é‘:eE-E O (40)

c2dt c?

ds_gap

v [= UxB v d d . UxB
)=(2):—-¢e|E =——p'=—p=¢l|FE 41
1) <>Ce(+ ) L = e(+ (41)

2.2 Trasformazioni dei campi

Il tensore del campo elettromagnetico F'*” trasforma come un tensore di ordine
2:
F'"™ = ANV FPo
ptro

Riscriviamo i termini per comodita:

0 —E —Ey —FEj3 ¥y =By 00
P E, 0 —B3 By . A= By v 00
FE, Bs 0 -5B 0 0 10
Ey —By, B 0 0 0 01

Partiamo con le trasformazioni del campo elettrico, nel caso di un boost lungo
I’asse . Procedendo componente per componente:

01 __ _ AO0A1l o
F = (—Ey) = A°ALF?

8 Approfondendo, cid deriva dal Teorema del Quoziente per il calcolo tensoriale, per cui se
consideriamo AB = C, con A e C tensori, allora anche B & un tensore. Qui, in particolare,
abbiamo che u, € un quadrivettore (tensore di ordine 1), e il risultato del prodotto Fu, &
0, ossia uno scalare (tensore di ordine 0). Percio anche F* deve essere un quadrivettore.
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Con la convenzione utilizzata, i numeri ad apice rappresentano righe, e quelli
a pedice colonne. Percio Ag rappresenta la prima riga della matrice A, e Al
la seconda riga. Notiamo subito che, per queste due righe, i termini non nulli
si trovano solo sulle prime due colonne, per cui p e o possono assumere valore
0 e 1. Inoltre, poiché i termini sulla diagonale di F*° sono nulli, deve essere
p # 0. Avremo quindi:

PO = AALF + ASALFI® — (AJAL — ASANFY! = (3% — 5%9?)(~ ) —
= —Q/Z(M%)El =—-F = Ei =F;
Per il secondo termine si ha:
02 _ _ A0 A2 ppo
F™ = (—Ey) = ApAoF"

Nella terza riga di A, I'unico termine non nullo corrisponde alla terza colonna,
per cui 0 = 2, e si ha A% = 1. D’altro canto, p pud assumere, come prima,
solamente i valori 0 e 1:

F? = AGF2+ A F'? = 5(—Ey)—fy(—Bs) = —(E2—fBs) = Ey = v(E,—[Bs)
Un discorso analogo vale per la terza componente:

F'% = (=Es)' = NG + N\ F? = (= E3) — Bv(Bs) = By = v(Es + 5B)
Per le trasformazioni del campo magnetico si segue lo stesso procedimento:

F™ = Bl = NS A% F7 = NSNS F? = F? = By
Y = By = ALAY 7 = AL FY + NS AL PP = —Bo(— ) + 7By = 3(Bs + BEy)
2= By = ALALF” = NALF® = NyF™ 4 N2 = (= 39) B + 4By = 7(Bs - BF)

Riassumiamo le trasformazioni dei campi elettromagnetici:

E =FE, B! =B,
Eg// = V(Ey - 632) ; Bg,/ = V(By + /BEZ>
B, = V(Ez + BBy) B, = V(Bz - BEy)

Notiamo percio che le componenti parallele al moto relativo tra i sdr non
variano (in questo caso consideriamo infatti uno spostamento lungo ), mentre
per le altre si ha un mescolamento di campi elettrici e magnetici. Percio, se in
un sdr si misurano entrambi i campi, in un altro e possibile che se ne osservi
solo uno: questo fatto sara molto importante per semplificare i conti.

2.3 Invarianti elettromagnetici

Troviamo ora delle grandezze invarianti che possano essere sfruttate nei conti.
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I Una prima idea ¢ la contrazione del tensore del campo elettromagnetico
con se stesso:

(B> - B?)

F,F*

Riscriviamolo per comodita:

0 -—-F —-E —E; 0 E, Es Es
F* = = ! —5s 22 0 B = 9ougor I = —E ¥ —Bs B

E, B3 0 —B; -k, B3 —-B

E; —Bs By 0 —F; —Bs By 0
Dividendo nei blocchetti colorati, si ottiene la scomposizione:
F, F" = FoF® + FyF% + F;F9 + B9 = —E? —E? B? +B; = 2(B>-F?)

i<j j<i
(E'-B)

IT Un altro invariante ¢ dato da:
€pvpo M P

Per la presenza di € gli indici p, v, p, 0 non possono presentare ripetizioni (cioe
non possono esserci due indici con lo stesso valore). Le possibilita sono percio
le permutazioni di 0123, per un totale di 4! = 24 opzioni. Una buona tattica
per calcolarle ¢ dividerle in tre gruppetti da 8:

Curpo FM FP7 = 8(e0123 F* F? + € F° F® + €g3o F° F2Y)

Dimostriamo, brevemente, la logica di questo passaggio. L’idea e di sfruttare
il piu possibile I'antisimmetria di € e F', per cui se uno scambio degli indici
coinvolge entrambi i tensori, allora i segni — che compaiono si cancelleranno.
Per esempio, partendo da ey o3 F23, possiamo scambiare 0 e 1 e ottenere
€1023F 1Y F23, che ¢ uguale a prima. Il gioco non funziona, invece, se lo scambio
degli indici coinvolge entrambi gli £, per esempio €g1o3FOV F'? — €go13FO2F13,
per cui la variazione non ¢ un semplice segno.

In generale, partendo da una qualsiasi combinazione avremo 8 scelte valide
per gli scambi di indice che mon ne modificano il risultato. Le prime 4 si
ottengono, banalmente, scambiando gli indici del primo F' (tenendo costanti
quelli del secondo), e poi invertendo i ruoli:

01 1723 __ 10 1723 _ 01 32 __ 10 1732
eo123F" F*° = €1003F T F = €quze T FUT = €q032F F

Notiamo poi che si puo scambiare 'ordine degli F' senza cambiare segno: cio
equivale a due scambi degli indici per €, che quindi si annullano. Possiamo ora
ripetere la stessa procedura di prima e ottenere le altre 4 possibilita:

01 23 23 101 32 01 23 1410 32 1410
€o123F F7° = €931 FUFTT = €3001 FUOETT = €310 F Y = €3010F

Scambiando gli indici tra F' diversi ci spostiamo da una “classe di possibilita”
all’altra. Bastera effettuare due di questi scambi per avere tutte e 24 le opzioni,
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come scritto di sopra.
Ora non resta che sostituire i termini di F e calcolare:

ENVPUF/“/FPO' = 8(60 23F F + € 0213 FO F -+ €03 F03F21) =
= 8[(=1)(=E1)(=B1) + L(=E2)(By) + (=1)(~E3)(~Bs)] = —8[E - B]
Abblamo quindi scoperto come calcolare questo secondo invariante. Poiché

E-Bé preservato, si ha che se E L B in un sdr allora lo & anche in tutti gli
altri.

2.4 Riduzione ad un solo campo

Possiamo sfruttare quanto ricavato per trovare trasformazioni che annullano
uno dei due campi (elettrico o magnetico), semplificando di conseguenza i
conti.

A. Campi perpendicolari Se, i campi elettrico e magnetico sono tra loro
perpendicolari lo saranno in tutti i sistemi di riferimento (come visto sopra).
A seconda del loro modulo, avremo, in generale, tre opzioni:

1. Se E-B=0e B2— E? <0, allora esiste un sdr in cui B’ = 0
2.9 E-B=0eB%— E*>> 0, allora esiste un sdr in cui E' =0

3. Se E-B=0e B>~ E? =0, allora non ¢ possibile annullare uno dei due
campi in alcun sdr.

(A livello mnemonico: si puo annullare il campo col modulo minore)

B. Campi non perpendicolari D’altro canto, se E-B # 0, allora esiste
sempre un sdr in cui £’ || B’.

Dimostrazione (A) Dimostriamo il primo caso. Sia E = (0,E,0) ¢ B =
(0,0, B), con E-B = 0 (ovviamente) e B?—E? < (. Scriviamo le trasformazioni
del campo magnetico:

Bi=B =0
By = 3(By + BE;) = 0
Bé = 7(33 - 5E2) = V(B - BE)

Imponendo B; = 0 (campo magnetico nullo nel nuovo sdr), la condizione
necessaria ¢ che § = B/FE, che risulta possibile se |5| < 1, ma questo ¢ vero
perché per ipotesi B2 — E? < 0 = B/E < 1. In tale sdr il campo elettrico
(I'unico presente) varra percio E' =+/—B? + E2.

Invertendo le disuguaglianze si dimostra anche il caso B> — E? > 0 (in cui sara
E ad annullarsi).
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Dimostrazione (B) Se invece E - B # 0 basta imporre la condizione di
parallelismo, ossia lannullar81 del prodotto vettore. Consideriamo, per sem-
plicita, campi EeB lungo il piano yz (in modo da isolare la componente
lungo % del prodotto vettore), per cui E = (0, By, E3) e B = (0, By, B3), con
le trasformazioni date da un boost lungo la direzione z. Il prodotto vettoriale
diviene:

A A A

z Y o
E'x B'=0=det |0 y(E;—fBs) +(Es+0B,)| =
0 V(By+BEs) (B — BEx)
= *((By — BB5)(Bs — BE») — (Es + $B,)(Bs + BEs)]
I
E2 B2
8 _|ExB|
1+p5° B+ B

— (EyBy — E3By)(1+ %) = B(E* + B?) =
—_— ——
|ExB|;
Ripetendo gli stessi conti per campi sui piani 2y o §2 e considerando boost

lungo § o 2 ¢ possibile ottenere altre relazioni (della stessa forma), che con-
ducono a questa espressione generale:

7 BxbB

1+62_E2—|—B2

—

Percio partendo da una situazione in cui E e B non sono perpendicolari, e
possibile effettuare un boost definito da B’ (vettore che indica sia la velocita
necessaria che la direzione) per giungere ad un sdr in cui E e B sono paralleli.
Ma cid ha senso solo se |3] < 1 (altrimenti richiederebbe velocita > ¢). Si
dimostra che tale condizione ¢ sempre soddisfatta.

Partiamo con alcune maggiorazioni:

|E x B| = EBsin < EB; (sinf <1)

|E x B EB 1
= < < —
E?24+B? — E?24 B2 7 2

L’ultimo passaggio si ha dalla nota disuguaglianza a? + b*> > 2ab (che si di-
mostra dall’ovvia (a — b)? > 0), per cui E* + B? > 2EB. Una frazione si
maggiora riducendo il denominatore, il cui valor minimo ¢ in questo caso pari
a 2F B come appena mostrato.

D’altro canto, la funzione |5]/(1 + %) & monotona crescente per 0 < 3 <1, e
assume il valore 1/2 in 8 = 1. Percio, se |3]/(1 + 4%) < 1/2 come ricavato, ne
conseguira | 4] < 1.

3 Moti nei campi

3.1 Particella carica in campo elettrico

Consideriamo una particella di carica unitaria +e che si muove sul piano 27,
con momento iniziale p(0) = (po.s, Poy,0), in presenza di un campo elettrico
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Figure“l: Particella carica in un campo elettrico E

uniforme e costante E = EZ lungo la direzione +1.
Dall’espressione della forza di Lorentz si ottiene, visto che B = 0, la
seguente espressione:

Integrando si giunge a:
Pu(t) = pos + eLt
Py(t) = poy
p.(t) =0

Come ci aspettavamo, il campo elettrico accelera la particella lungo . Ammesso
che il campo sia sufficientemente esteso, negli istanti precedenti a t = 0 la par-
ticella era pitl lenta, e ad un certo ¢ aveva velocita nulla lungo #. Possiamo
sfruttare cio per effettuare una traslazione temporale del sistema di riferimento
e rimuovere il fastidioso termine pg, per semplicita di conti:

Do,z

Poo p—p P02y (#) = eBY

t'=t+
eF el

Per non appesantire la notazione, nei passaggi seguenti si scrivera semplice-
mente p,(t) = eE£t eliminando gli apici.
Ricordando ora:

— N 2 —
_v_ PPV 5 P
6—0 Cg:g 62:>v 5 (42)
e la relazione di mass-shell £ = y/m?2c* + ¢2p? | si ottiene:
dv ¢ pa(t) *(ekt) *(eEt) *(eEt)
'Ux = — = = = =
dt £ mPct + (P2, H(eB)?) /G + 2(eBt)?
\—g,_/ 50 1+
0

Ponendo o = e/ &, si giunge a:

d 2at 1d 1
o8 2 14 (act)2 = a(t) = 1+ (act)2 + o

dt 1+ (cat)? odt a
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Ripetendo lo stesso conto lungo §:

dy — py(t) *poy PoyC d Do
~a = ’ = 2 arcsinh(act) = y(t) = =2 arcsinh(act)+
Uy = 5 o it (acr o di arcsinh(act) = y(t) o, arcsinh(act)+c,

Definendo l'origine del sistema di riferimento a partire dalla posizione della
particella a t = 0 si deducono le condizioni al contorno x(0) = 0 e y(0) = 0,
che portano a trovare ¢, = —1/a e ¢, = 0. La traiettoria percorsa dalla
particella e percio data in forma parametrica da:

z(t) = 1 ( 1+ (aet)? — 1>

a
pO,yC .

t) = h(act

y(t) Cp aresin (ceet)

Da y(t) si puo ricavare act

Ey(t
y(t) = Maurcsinh(ozczf) = C y()
el P0,yC

= arcsinh(act) = act = sinh <

6Ey(t)>

PoyC

che, sostituito nell’espressione per z(t), conduce alla forma grafico:

0= 5 (e (21) 1) = £ o (222 )

3.2 Particella carica in campo magnetico

Consideriamo ora una particella di carica +e che parte con velocita #(0)
(v5(0), v,4(0),v,(0)) all’interno di un campo magnetico uniforme e costante B
(0,0, B) diretto lungo +2.

Dall’espressione della forza di Lorentz e applicando la relazione trovata
nel paragrafo precedente si ottiene:

dp  Edve = —
—=——-(UxB)= —=—(UxB 43

TRy Tk il A LR (43)
Partendo dal risultato in 1) osserviamo poi che, essendo E = 0, 'energia

cinetica della particella non varia:
d&€ -
— =ek -7
dt
Percio non varia neanche il modulo della velocita, e da cio si deduce che
I’accelerazione subita dalla particella e sempre perpendicolare alla sua velocita
(come nel caso classico):

d& dv? L du . S
~~

a

Per trovare la traiettoria & necessario integrare 1’equazione in (43)). Iniziamo
calcolando il termine v x B:

z i 2
Ux B =det |v,(t) v,(t) v.(t)| =2y (t)B) = §(va(t)B)
0o 0 B
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Sostituendo il risultato in e proiettando sulle varie coordinate:
dv, ecB  dv, ecB  dv,

A A
—— ——

w w

=0

Osserviamo che, come nel caso classico, il campo magnetico lascia invariata
la componente della velocita parallela ad esso. Il moto lungo 2 sara percio
uniforme, e integrando si ottiene banalmente: v,(t) = v,(0) e x, = zo + v,(0)t.
Ponendo w = (ecB) /& si giunge al sistema:

Uy (t) = wuy(t)
Uy (1) = —wu,(t)

Per risolverlo definiamo la “velocita complessa” come v, (t) = v,(t) + iv,(t).
Derivando e sostituendo le equazioni di sopra:

01 () = 0,(t) + 00y (1) = woy(t) — iwv,(t) = —iw(vL(t) + v, () = —iwvy (1)

In questo modo si e ridotto un sistema di due equazioni differenziali a coef-
ficienti reali in una sola (ma a coefficienti complessi), che si risolve con una
semplice integrazione:

0 (t) = —iwv, (t) = v, (t) = Le—iwt

Imponiamo quindi la condizione iniziale v, (0) = v,(0) + iv,(0) = k. Os-
serviamo che il modulo |v, (t)| = |v,(0)] V¢, per cui v,(0) = |v,|cosf e
vy(0) = |vy|siné, con § = arctan(v,(0)/v,(0)).

Sostituendo nell’equazione:

—i(wt—a) _

vy (t) = |vi|(cosO+isinf)e ™" = |v, e |vy | cos(wt—a)—i|V | sin(wt—a)

Per trovare le soluzioni reali per v,(t) e v,(t) basta dividere parte reale e parte
immaginaria e integrare:

v, (t) = Ccl; = |v | cos(wt — ) = ijdt sin(wt — «) z(t) — xg = ‘Q:j‘ sin(wt — «)
d =
vy (t) = d—g; = —|v,|sin(wt — a) = %% cos(wt — ) y(t) —yo = ‘ij‘ cos(wt — a)

Elevando al quadrato e sommando si elimina la dipendenza dal tempo:

2

(x(t) — 20)* + (y(t) — vo)* = %

e si trova che il moto sul piano Zj ¢ circolare, con raggio R = |v, |/w, percorso
a velocita angolare uniforme w:

ecB e/B eB Wyonrel

E gyl ™ 7

w =

Da cui:

vi v myc? = [vi[mye
w ecB eB
Ricordando la relazione |p, | = E|v,|/c? si puo scrivere il raggio in funzione del

momento:
ot (Cn) (£ o
w £ ecB eB
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4 Formulario

. 0 10
Derivata o, = En = (c@t’ \Y%
(44)
0 10
oH=—:1=(-——,-V
ox, (c ot’
(45)
: R dxt 0]
Quadrivelocita ut = = v(v) (1, c) ;o oufu, =1
(46)
dt
Intervallo ds = \/gm,dx“dx” = \/dxudx” = C( )
~y(v
(47)
dut 4 2 4
Quadriaccelerazione w" := c;; = (Zz,)ﬁ a, %al + 2—41}1(17- 6)) ;o whuy, = 0;
(48)
. E )
Quadrimomento pt = meut = (, my(v U’)
c
(49)
Energia E = \/m2c* + 2[p]2 = my(v)c?
(50)
dp* _ -
Quadriforza = <7F 7 7F) . Fru, =0
ds c? c
(51)
p p
= — = E— = — 2
p=t=ck =2 (52
_ P
By =
Infatti 8 = p/E, e v = 1/y/1 — (32, percio:
E\J1— 2 0 VMEEp? [ M2 P M M
M2 +p2
Dove in (x) si ¢ applicata la relazione di mass-shell: E = /m?c* + p?c? con
c=1.
Relazione tra 3 e v:
1 2 1 2,2 2 02,2 7 -1
= =y = = (1— =1=~v"—- =1= =
e T p (1=5%)y v =By B v

5 Appendice

5.1 Cambio di variabile casuale

Sia x una variabile casuale con distribuzione data dalla pdf f(x), e y un’altra
variabile casuale derivata dalla prima tramite una relazione funzionale y =

Francesco Manzali, Giugno 2018

36



T'(z). Ci si pone il problema di trovare la pdf di y.

Il caso piu semplice € se T' e biunivoca. Allora, intuitivamente, quando x
appartiene ad un intervallino centrato su z* e largo dx, allora y si trovera in
un intervallino centrato su y* = T'(z*) e largo dy = |T"(x)|dz (dalla definizione
di differenziale - il modulo compare poiché stiamo considerando I'ampiezza di
un intervallo, quantita che ¢ definita positiva). Poiché T & biunivocaﬂ tale
intervallino di y ¢ unico. Percio, se x si trova nel suo intervallino dx con
probabilita dp = f(x)dz (dalla def. di pdf), allora y sara per forza in dy, con
la stessa probabilita dp.

Poiché la dp ¢ la stessa possiamo scrivere la seguente uguaglianza:

_ f@)
T7(@)

f(@)de = g(y)dy = g(y)|T"(x)|dz = g(z)

Possiamo ora effettuare il cambio di variabili scrivendo x in funzione di y
tramite x = T~!(y) (che esiste poiché T & biunivoca):

_ J(T()
(T (y))]

che costituisce la formula per il cambio di variabile casuale.

Esempio. Giustifichiamo la scrittura df (6) = asin 0df = dg(cos ) = ad cosb.
Qui abbiamo una variabile casuale 6 che si distribuisce con pdf data da f(0).
Il cambio di variabile e T : 6 — cos ﬂ Applicando la formula:

9(y)

_asin(T'(cosh))
g(cost) = | — sin(T(cos0))| -

da cui dg(cos ) = adcos @ come desiderato.

9Nel caso T non sia biunivoca sara necessario considerare tutti gli intervallini in cui y
potrebbe trovarsi dato che x € in dx, e “spalmare” su di essi la probabilita dp

10Nota: non & una funzione biunivoca, ma fortunatamente non sara necessario fare con-
siderazioni complesse grazie ad una semplificazione
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