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Introduzione
Buonsalve!
In questo documento ho cercato di riordinare gli appunti di Relatività Speciale
tratti dal corso di Fisica Moderna tenuto dal professor Flavio Seno presso il
Dipartimento di Fisica dell’Università di Padova nel corso del secondo semestre
del 2018.
Tale lavoro è frutto di una rielaborazione personale, motivata principalmente
dall’interesse per la materia1. Per questo in diversi punti mi sono concen-
trato sul ricercare una qualche sorta di intuizione per spiegare/visualizzare i
risultati ottenuti. Chiaramente non posso garantire che i ragionamenti che ne
sono scaturiti siano corretti, ma solo che quando li ho scritti mi sembravano
ragionevoli.
Potrebbero esserci errori di formattazione, parentesi saltate, o peggio, coeffi-
cienti/esponenti/segni errati in giro (ma non dovrebbero essere tanti). Se ne
sgamate qualcuno, fatemi sapere. Ditemi anche (se avete tempo e non vi scoc-
cia) se ci sono passaggi non chiari: sono dell’idea che eventuali punti oscuri
siano sintomo di qualche cosa che non ho veramente capito (ma che penso di
sapere, cosa che è pericolosissima).
Per il resto questa non è la versione finale degli appunti: comprende infatti
solo gli argomenti dalla cinematica relativistica in poi. Sto ultimando una
discussione anche della parte iniziale, che è stata notevolmente rallentata dal
cercare di chiarire il significato di componenti covarianti/contravarianti2 e che,
eventualmente, aggiungerò qui. Ma poiché le altre parti sono relativamente3

complete, perché aspettare? Magari a qualcuno può servire tutto ciò.
Prima di iniziare, ultimo disclaimer (che dovrebbe essere scontato dato che
non ho una laurea): questi appunti non sono da intendere come sostituzione
delle lezioni, o di altre dispense già presenti.
Buon viaggio! :)

Francesco Manzali, 03/06/2018

Aggiornamenti

Data Aggiunte Errata corrige Commenti
03/06/2018 Prima pubblicazione
14/10/2018 Nulla Corretti vari errori e refusi su segnalazione (con sommo ritardo).

Table“1: Cronologia di modifiche/aggiornamenti agli appunti

1Fisica moderna is best fisica
2Il mio dubbio principale è stato: “E queste chi le ha ordinate?”
3Pun intended
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1 Cinematica relativistica

1.1 Decadimenti
In un decadimento una particella si scompone spontaneamente in più parti-
celle diverse. Si tratta di un fenomeno probabilistico, per cui non è possibile
determinare in anticipo quando una data particella decadrà. Tuttavia, con- Equazione dei decadi-

mentisiderando quantità macroscopiche di sostanze, è possibile scrivere una legge
statistica riguardante il decadimento:

N(t+ dt) = N(t)− λN(t)dt⇒ dN

N
= −λ

N(t) è il numero di particelle della sostanza iniziale presenti nel sistema con-
siderato al tempo t. Dopo un intervallo infinitesimo dt, tale numero è destinato
a decrescere con una velocità λ, che costituisce la costante di decadimento. La
soluzione esplicita dell’equazione differenziale è:

N(t) = N0e
− t
τ ; τ = 1

λ

dove τ (vita media) è l’intervallo di tempo necessario a ridurre la popolazione
iniziale N0 di particelle al 36.8% (1/e). Spesso si fa ricorso al tempo di
dimezzamento t1/2 = ln 2τ , che corrisponde all’intervallo medio di tempo
necessario perché il numero iniziale di particelle si dimezzi.
Si consideri un generico urto in cui una particella di massa M si scompone in Massa iniziale ≥

massa prodottiN particelle di masse m1 . . .mN .
Poniamoci nel sistema di riferimento in cui la particella iniziale è ferma, che da
ora in poi chiameremo sdr del centro di massa (CM). Allora, ponendo c = 1,
si avrà che:

pµpµ = p∗,0
2 − |��̄p

∗|2 = M2 ⇒ p∗,0 = M

Applicando la conservazione dell’energia:

M = E∗1 + · · ·+ E∗N =
N∑
i=1

E∗i =
N∑
i=1

√
m2
i + p∗,2i ≥

N∑
i=1

mi

ossia la somma delle masse delle particelle prodotte dal decadimento deve
essere minore della massa iniziale della particella che si è decomposta (non si
può creare massa dal nulla).
Si consideri ora una particella di massa M che decade in due particelle più Decadimento in due

particellepiccole di massa m1 e m2, con M che è inizialmente in movimento rispetto al
sdr del laboratorio.
In questo caso è conveniente analizzare il moto nel sdr del centro di massa del
sistema (la cui origine coincide ovviamente con la particella iniziale), indicato
con ∗.
Nel sdr del CM il trimomento iniziale è nullo, e perciò, indicati con p̄∗1 e p̄∗2 i
trimomenti delle particelle prodotte, si avrà:

p̄∗1 + p̄∗2 = 0⇒ |p̄∗1| = |p̄∗2| = p∗ (1)

ossia le particelle prodotte hanno, in modulo, lo stesso trimomento, e sono
lanciate lungo la stessa direzione in versi opposti.
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Detto θ∗ l’angolo descritto con +x̂ dal moto della prima particella prodotta,
si ha perciò:

p∗1 =
(
E∗1

�c
, p∗ cos θ∗, p∗ sin θ∗, 0

)
; p∗2 = (E∗2 ,−p∗ cos θ∗,−p∗ sin θ∗, 0)

Nota: da qui in poi si userà la convenzione per cui c = 1.
Ricavando le energie dai momenti:

E∗
2

1 = m2
1��c

4 + p∗
2
��c2; E∗

2

2 = m2
2 + p∗

2 ⇒ E∗
2

1 − E∗
2

2 = m2
1 −m2

2 (2)

Applicando la conservazione dell’energia nel sdr del CM (dove la particella
iniziale è ferma):

M��c2 = E∗1 + E∗2 ⇒ E∗1 = M − E∗2 (3)

Possiamo ora mettere a sistema 2 e 3 per ricavare le energie in funzione delle
masse. La via più veloce è moltiplicando e dividendo per l’energia totale: Energia e momento

(E∗1 − E∗2)E
∗
1 + E∗2

E∗1 + E∗2
=

E∗
2

1 − E∗
2

2

E∗1 + E∗2
= m2

1 −m2
2

M
= M − 2E∗2 (4)

⇒


E∗1 = M2 −m2

2 +m2
1

2M ��c2

E∗2 = m2
2 −m2

1 +M2

2M ��c2
(5)

Da 2 si ricava p∗2 = E∗
2

1 −m2
1, e sostituendo l’espressione appena trovata per

E∗
2

1 si giunge a:

p∗
2 = 1

4M2 [M4 +m4
1 +m4

2 − 2M2(m2
1 +m2

2)− 2m2
1m

2
2] (6)

Chiamiamo θ∗α l’angolo formato dalla velocità della particella di massa mα Angolo
(con α = 1, 2, poiché il decadimento è in due particelle) con l’asse +x̂ appena
dopo il decadimento. Scomponendo la quantità di moto sugli assi si ottiene
p∗α,x = p∗ cos θ∗α e p∗α,y = p∗ sin θ∗α. Nel sdr del CM, si avrà poi θ∗2 = π − θ∗1, in
quanto i momenti delle due particelle sono opposti.
Nel sdr del laboratorio, tuttavia, la particella iniziale è in movimento, e perciò
la direzione di uscita delle particelle del decadimento non sarà opposta, ma
tale che il momento (inizialmente non nullo) sia conservato.
Applicando la trasformazione di Lorentz al quadrimomento si ottiene:

pα =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1




E∗α/�c

p∗ cos θ∗α
p∗ sin θ∗α

0

 =


γ(E∗α + βp∗ cos θ∗α)
γ(p∗ cos θ∗α + βE∗α)

p∗ sin θ∗α
0

 =


Eα/�c

pα,x

pα,y

pα,z


Scrivendo il quadrato del momento p∗ in funzione di pα,x e pα,y si giunge a:

(
pα,x
γ
− βE∗α

)2

+ p2
α,y = p∗

2(cos2 θ∗α + sin2 θ∗α) = p∗
2
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Equazione che può essere riarrangiata come:

(pα,x − γβE∗α )2

( p∗γ )2
+
p2
α,y

p∗
2

= 1 (7)

che rappresenta un’ellisse sul piano pα,x, pα,y, con centro posto a ( γβE∗α , 0)
e semiassi sx = p∗γ e sy = p∗ In particolare l’ellisse può non compren-
dere l’origine se il centro si trova ad una distanza dall’origine maggiore della
lunghezza del semiasse sx, ossia per β > p∗/E∗α = β∗α, dove β = vCM/c (nel sdr
del laboratorio). Quando ciò si verifica si parla di emissione in avanti.

Per determinare il valore dell’angolo massimo, consideriamo una retta gener- Angolo massimo
ica sul piano pα,x, pα,y, che sarà parametrizzata come pα,x = q cos θ, da cui
pα,y = q sin θ. Intersecando l’equazione 7 con tale retta, e imponendo la con-
dizione di ∆ = 0 nell’equazione di secondo grado risultante, è possibile deter-
minare il valore di θmax per cui la retta risulta tangente all’ellisse.
Ponendo ε′ = βE∗α per semplicità, ed effettuando le sostituzioni, si ottiene:

(q cos θ − γε′)2

γ2 + q2 sin2 θ = p∗
2

Dalla relazione γ2 = 1/(1− β2) e svolgendo il quadrato si giunge a:

q2 cos2 θ(1− β2) + ε′2 − 2q cos θε′
γ

+ q2 sinθ = p∗
2

Raccogliendo un q2 e semplificando si giunge infine a:

q2(1− β2 cos2 θ)− 2q cos θε′
γ

+ ε′2 − p∗2 = 0

Con A = 1 − β2 cos2 θ, B = cos θε′/γ e C = ε′2 − p∗2 si evidenzia l’equazione
di secondo grado: q2A− 2qB + C = 0. Imponendo il ∆ = 0 si ha:

B2 − AC = 0 = cos2 θε′2(1−��β2)− (ε′2 − p∗2) + β2 cos2 θ(��ε′2 − p∗
2) = 0

Espandendo si ottiene l’espressione per il coseno:

cos2 θ(ε′2 − p∗2
β2) = ε′2 − p∗2 ⇒ cos2 θ = ε′2 − p∗2

ε′2 − p∗2β2

Da cui si può ottenere quella per il seno tramite sin2 θ = 1− cos2 θ:

sin2 θ = p∗
2(1− β2)

ε′2 − p∗2
β2

È possibile riscrivere il denominatore partendo dalla relazione:

E2 = m2+p2 ⇒ mα = E2
α −p∗

2 = ε′2

β2−p
∗2 = ε′2 − p∗2

β2

β2 ⇒ mαβ
2 = ε′2−p∗2

β2

dove si è sfruttata la sostituzione ε′2 = β2E2
α ⇒ E2

α = ε′2/β2 . Si giunge perciò
ad un’espressione più semplice per il seno:

sin2 θ = p∗
2(1− β2)
m2
αβ

2 = p∗
2

m2
αβ

2γ2 ⇒ sin θmaxα = p∗

mαβγ
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Se la particella che decade ha uno spin nullo, allora, nel sistema di riferi- Distribuzione delle en-
ergiemento del centro di massa, la distribuzione degli angoli d’uscita delle particelle

generate sarà uniforme: non ci sarà cioè un angolo d’uscita più probabile degli
altri, e le particelle saranno emesse equamente in ogni direzione. Partendo da
questo fatto sperimentale, ci si pone il problema di determinare la distribuzione
delle energie delle particelle osservata nel sistema di riferimento del laborato-
rio, rispetto al quale il CM si muove a velocità v, da cui sono determinati i
parametri β e γ.
Consideriamo un certo numero M di decadimenti, che produrrà Ntot parti-
celle risultanti. Ponendo un rilevatore sferico attorno al sito di decadimento e
stazionario rispetto ad esso (quindi stazionario nel sdr del CM), ci si aspetta
che attraverso sezioni uguali di rilevatore passi (mediamente) lo stesso numero
di particelle. In altre parole il numero di particelle N ′ che passa attraverso una
certa sezione A è proporzionale all’area di tale sezione tramite una costante che
chiamiamo σ: N(A) = σA, con σ = Ntot/4π. Poiché abbiamo usato una sfera
di raggio unitario, A corrisponde (per definizione) all’angolo solido sotteso da
quella sezione (da Ω = A/r2, con r = 1).
Fissato un sistema di coordinate sferiche attorno al CM, con angoli θ e ϕ,
possiamo ora costruire la funzione densità di probabilità dχ(θ∗) che restituisce
la probabilità di una particella di uscire ad un angolo θ∗, ossia di attraversare
la corona sferica compresa tra θ∗ e θ∗ + dθ∗. Tale sezione sottende un angolo
solido pari a:

dΩ∗ = (2π sin θ∗)dθ∗

(Basta figurarsi la sfera unitaria: 2π sin θ∗ è la circonferenza interna della
corona sferica, e dθ è il suo spessore infinitesimo. Srotolando la striscia della
corona circolare essa risulta un rettangolo dalle cui dimensioni ricaviamo l’area).
Sostituendo nell’espressione per N(Ω):

dN(Ω) = σdΩ⇒ dN(θ∗) =
(
Ntot

4π

)
(2π sin θ∗dθ∗)

dN(θ∗) è perciò il numero di particelle, originate daM decadimenti, con angolo
di uscita pari a θ∗ nel sdr del CM. Per giungere alla densità di probabilità
cercata, è necessario normalizzare: basta dividere per il numero di particelle
originate (Ntot):

dN(θ∗) = 1
2 sin θ∗dθ∗ = 1

2d cos θ∗

dN(θ∗) è la probabilità, e f(θ∗) = 1
2 sin θ∗ è la funzione densità di probabilità.

Nel secondo passaggio è sottinteso un cambio di variabile casuale da θ∗ a cos θ∗:
il segno − che comparirebbe di norma è cancellato dal modulo della formula
del cambio di variabili casuali (in quanto una pdf è definita positiva): vedi
appendice.
Poiché ci interessa effettuare un cambio di variabile per associare angoli ad
energie (e ricavare la distribuzione delle energie), conviene adottare come vari-
abile direttamente cos θ∗. Il cambio di variabile è infatti dato dalla trasfor-
mazione di Lorentz dell’energia:

E(cos θ∗) = γ(E∗ + βp∗ cos θ∗ )

Prendendo quindi la funzione densità di probabilità f(cos θ∗) = 1/2 (ricavata
sopra), si può applicare direttamente la formula per il cambio di variabile
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casuale:

ρ(E) = f(E(cos θ∗))∣∣∣∣∣ d

d cos θ∗E(cos θ∗)
∣∣∣∣∣

= 1/2
d

d cos θ∗γ(E∗ + βp∗ cos θ∗)
= 1

2γβp∗

Alternativamente, per andare veloci, si può usare il metodo (barbaro) di molti-
plicare i differenziali:

ρ(E) = dχ(E(θ∗))
dE

= dχ(E(θ∗))
d cos θ∗︸ ︷︷ ︸

1/2

d cos θ∗
dE︸ ︷︷ ︸

1/(γβp∗)

= 1
2

1
γβp∗

In ogni caso, ρ(E) è la pdf delle energie delle particelle generate dal decadi-
mento di una particella con spin nullo. Essa è definita nel dominio costituito
dall’intervallo [Emin, Emax], con Emin = γ(E∗ − βp∗) e Emax = γ(E∗ + βp∗).
Verifichiamo che sia ben definita, ossia che l’integrale sul suo dominio sia pari
a 1:∫ Emax

Emin
ρ(E)dE =

∫ Emax

Emin

1
2γβp∗dE = 1

2γβp∗ (Emax−Emin) = 1
2γβp∗ (γβp

∗+γβp∗) = 1

Consideriamo ora il caso speciale di un decadimento in due masse uguali: Decadimento in due
masse ugualiM → m+m.

Riscrivendo le equazioni 1, 5, 6 con m1 = m2 = m:

p̄∗1 + p̄∗2 = 0; |p∗1| = |p∗2| := p∗ =
√
M2

4 −m
2; E∗1 = E∗2 = M

2 := E∗ (8)

Da cui:
β∗1 = β∗2 = p∗

E∗
= 2p∗

M
:= β∗

Sia ora θ∗α l’angolo d’uscita della particella α-esima nel sdr del CM. Scompo-
nendo la quantità di moto lungo gli assi e passando al sdr del laboratorio si
giunge a:

pα,x = γ(p∗ cos θ∗α + βE∗); pαy = p∗ sin θ∗α
Da cui:

tan θα = pαy
pαx

= p∗ sin θ∗α
γ(p∗ cos θ∗α + βE∗) = sin θ∗α

γ

(
cos θ∗α + β

E∗

p∗

) =
(∗)

sin θ∗α

γ

(
cos θ∗α + β

β∗

)

In (∗) si effettuata la sostituzione β∗ = p∗/E∗ ⇒ 1/β∗ = E∗/p∗.
Definendo l’angolo θ∗ = θ∗1, poiché le due masse sono emesse lungo la stessa
direzione in versi opposti (nel sdr del CM), valgono le relazioni:

sin θ∗1 = − sin θ∗2 := sin θ∗; cos θ∗1 = − cos θ∗2 = cos θ∗

Da cui:

tan θ1 = sin θ∗

γ

(
cos θ∗ +

β

β∗

) ; tan θ2 = − sin θ∗

γ

(
− cos θ∗ +

β

β∗

) = sin θ∗

γ

(
cos θ∗ − β

β∗

)
(9)
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Consideriamo ora l’angolo θ = θ1−θ2 formato dalle direzioni d’uscita delle due
particelle (nel sdr del laboratorio). La formula di sottrazione delle tangenti è Angolo tra le parti-

celledata da:
tan θ = tan(θ1 − θ2) = tan θ1 − tan θ2

1 + tan θ1 tan θ2

e applicandola alle tangenti in 9:

tan θ =

sin θ∗

γ
(
cos θ∗ + β

β∗

) − sin θ∗

γ

(
cos θ∗ − β

β∗

)

1 + sin2 θ∗

γ2
(
cos2 θ − β

β∗

) =

(((
(((sin θ∗ cos θ∗ − β

β∗
sin θ∗ −((((((sin θ∗ cos θ∗ − β

β∗
sin θ∗

γ

(
cos2 θ∗ − β2

β∗2

)

γ2
(

cos2 θ∗ − β2

β∗2

)
+ sin2 θ∗

γ2
(

cos2 θ∗ − β2

β∗2

)
=

=
−2β sin θ∗

β∗
γ

γ2
[

cos2 θ∗ − β2

β∗2 + sin2 θ∗(1 − β2)
] =

− 2β
β∗γ

sin θ∗[
1− β2

β∗2 − β2 sin2 θ∗
] =

=
��−

2β
β∗γ

sin θ∗

��−β2
[
− 1
β2 + 1

β∗2
+ sin2 θ∗

] =

2
ββ∗γ

sin θ∗

sin2 θ∗ + 1
β∗2 −

1
β2

:= f(θ∗) �

che riscriviamo per semplicità come:

f(θ∗) = tan θ = A sin θ∗
sin2 θ∗ +B

;


A = 2

ββ∗γ

B = 1
β∗2 −

1
β2

Passiamo ora allo studio della funzione f(θ∗).
Il denominatore si annulla per sin2 θ∗ = −B, che ha soluzione solo per −1 <
B < 0, dove si avrà θ∗ = arcsin(±

√
−B). La funzione si annulla per sin θ∗ = 0,

ossia per θ∗ = 0, π (definendo θ∗ tra 0 e π, e quindi ignorando la periodicità).
Calcoliamo le derivate prima e seconda:

f ′(θ∗) = A cos θ∗(B − sin2 θ∗)
(B + sin2 θ∗)2 (10)

f ′′(θ∗) = − A sin θ∗
(B + sin θ∗)3

[
B2 + 6B cos2 θ∗ − 2 sin2 θ∗ cos2 θ∗ − sin4 θ∗

]
(11)

Cerchiamo ora i punti stazionari. La derivata prima si annulla quando cos θ∗ =
0, ossia per θ∗ = π/2, oppure quando B = sin2 θ∗, cosa che succede solo per
0 < B < 1. Concentriamoci sul primo caso.
Detto θ̄ (sdr laboratorio) il valore per cui si ha θ∗ = π/2 (sdr del CM), calcol-
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iamo il valore che la funzione assume in tale punto:

tan
(
θ
(
π

2

))
= tan(θ̄) = A

1 +B
=

2
ββ∗γ

1 +
(

1
β∗2 −

1
β2

) =

2
ββ∗ γ

β∗
2
β2 + β2 − β∗2

β∗
2
β2

=

= 2β∗β
γ(β2 − β∗2 + β∗2β2) =

/β2

2β∗

γβ
β2 − β∗2 (1− β2)

β2

=
(∗)

2β∗

γβ

(
1− β∗

2

(γβ)2

)

dove in (∗) si è usata la sostituzione 1/γ2 = (1 − β2), per poi spezzare
la frazione e giungere al risultato finale. Notiamo che, poiché A ≥ 0 per
definizione, il segno di tan θ̄ è determinato da quello di B, tramite:B < −1 ⇔ tan θ̄ < 0

B > −1 ⇔ tan θ̄ > 0

In particolare B < −1 se:

1
β∗2−

1
β2 < −1⇒ β2−β∗2

< −β2β∗
2 ⇒ −β∗2(1−β2) < −β2 ⇒ β2 <

β∗
2

γ2 ⇒ β <
β∗

γ

E per B = −1 si ha β = β∗/γ.
Si può semplificare la formula ottenuta per tan θ̄ ricordando la formula di
duplicazione della tangente:

tanα =
2 tan α2

1− tan2 α

2
(12)

E osservando che il risultato per tan θ̄ ha la stessa formula del secondo membro
di 12, si ottiene per confronto:

tan θ̄2 = β∗

γβ
⇒ θ̄ = 2 arctan β∗

γβ
(13)

Verifichiamo la tipologia di estremo calcolando la derivata seconda in θ̄:

f ′′(θ̄) = − A

(B + 1)3 (B2 − 1) = − A

(B + 1)2 (B − 1)

Di nuovo, il segno dipende solo da B, e si ha:B < 1 ⇔ f ′′(θ̄) > 0⇒ θ̄ min

B > 1 ⇔ f ′′(θ̄) < 0⇒ θ̄ max

In particolare, B < 1 se:

1
β∗2−

1
β2 < 1⇒ β2−β∗2

< β2β∗
2 ⇒ β2(1−β∗2) < β∗

2 ⇒ β2

γ∗2 < β∗
2 ⇒ β < β∗γ∗
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e con B = 1 si ha β = β∗γ∗.
Concentriamoci ora sull’altro caso in cui la derivata prima può annullarsi, e
cioè quando B = sin2 θ∗ (che si verifica solo per 0 < B < 1). Definiamo
l’angolo θ0 come l’angolo a cui ciò si verifica: B = sin2 θ∗0.
Il valore della funzione in θ0 è dato da:

tan(θ(θ∗0)) = A sin θ∗0
2 sin2 θ∗0

= A

2 sin θ∗0
= 1
γββ∗ sin θ∗0

Per come abbiamo definito θ0:

sin θ∗0 =
√

1
β∗2 −

1
β∗

=

√
β∗ − β∗2

β∗β

E sostituendo nell’espressione di sopra:

tan θ0 = 1
γ
√
β2 − β∗2

⇒ θ0 = arctan 1
γ
√
β2 − β∗2

Esaminiamo anche qui la tipologia di estremo calcolando la derivata seconda:

f ′′(θ0) = −A sin θ∗0
8 sin2 θ∗0

(4 sin2 θ∗0 cos2 θ∗) < 0⇒ θ0 punto di max

Riepilogando, ricordando che per −1 < B < 0 la funzione presenta asintoti, e
che per B = 0 si ha β∗ = β, vi sono quattro sezioni principali in cui studiare
la funzione tan θ:

1. B < −1 (β < β∗/γ): nessun asintoto, θ̄ è un punto di minimo globale

2. −1 < B < 0 (β∗/γ < β < β∗): due asintoti verticali, θ̄ è un punto di
minimo locale

3. 0 < B < 1 (β∗ < β < β∗γ∗): nessun asintoto, θ̄ è un punto di minimo,
mentre θ0 è massimo globale

4. B > 1 (β > β∗γ∗): nessun asintoto, θ̄ è un punto di massimo globale

In tutti i casi la funzione si annulla in 0 e π.

1.1.1 Angoli tra particelle: riepilogo e qualche intuizione

Nella figura di seguito sono riportate quattro coppie di grafici, ciascuna
delle quali si riferisce ad uno dei quattro casi appena discussi.
A sinistra si ha il grafico della funzione tan θ(θ∗), ossia dell’andamento della Descrizione dei grafici
tangente dell’angolo, misurato nel laboratorio, compreso tra le traietto-
rie delle due particelle dopo il decadimento. Tale tangente è graficata in
funzione di θ∗, che è l’angolo che una delle due particelle prodotte forma, nel
sistema di riferimento del CM, con la direzione di volo (ossia la traiettoria
della particella originale che si è decomposta)4.

4La scelta di quale particella considerare per θ∗ è arbitraria e irrilevante, visto che le due
particelle hanno la stessa massa: l’angolo dell’altra sarà quindi univocamente determinato
(e pari a π+θ∗ nel sdr del CM). Ciò si osserva nella simmetria dei grafici di sinistra rispetto
a θ∗ = π/2.
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Se consideriamo θ ∈ [0, π], allora i valori negativi di tan θ corrispondono ad
angoli tra π/2 e π, mentre quelli positivi ad angoli più piccoli, tra 0 e π/2.
Con ragionamenti simili si possono rappresentare i range di θ possibili su una
circonferenza goniometrica (o meglio, semicirconferenza visto che consideriamo
θ ∈ [0, π]), e questo è ciò che è stato fatto per ottenere i grafici a destra.
Per esempio, nel caso B < −1, tan θ assume valori negativi (che corrispon- Casi B < 0
dono a θ > π/2), che vanno da 0 (corrispondente a θ = π) fino ad un minimo
quando θ∗ = π/2, ossia quando θ = θ̄. Perciò gli angoli osservabili nel sdr del
laboratorio saranno quelli tra θ̄ < θ < π: ossia le due particelle non possono
essere emesse con un angolo compreso inferiore a θ̄.
Analogamente avviene nel caso −1 < B < 0: qui il grafico di tan θ copre tutti
i numeri negativi, quindi ogni angolo θ tra π/2 e π è ammesso. Non copre però
tutti i numeri positivi: c’è anche qua un angolo minimo tra le due particelle
generate, sempre corrispondente a θ∗ = π/2 e θ = θ̄.
Tutto ciò è ragionevole e non sorprende. Per B < 0, infatti, β < β∗ (dove β in-
dica la velocità della particella originale nel sdr del laboratorio, e β∗ quella delle
particelle prodotte, misurata nel sdr del CM), per cui non si ha produzione in
avanti. In altre parole, una particella che viene generata “all’indietro” rispetto
al CM appare lanciata all’indietro anche nel laboratorio. Classicamente è come
sparare un proiettile da una macchina nella direzione contraria al moto: dal
punto di vista di un osservatore a terra il proiettile è rallentato rispetto ad un
lancio da fermi (in quanto la velocità dell’auto si sottrae a quella del proiet-
tile), ma in maniera non significativa, e quindi procede comunque in direzione
contraria a quella del moto della macchina5. Questo significa che un angolo θ
di π è sempre osservabile: corrisponde al caso di particelle generate lungo la
direzione di volo (una all’indietro e una in avanti), e infatti lo ritroviamo in
corrispondenza di θ∗ = 0 e θ∗ = π. Allora intuitivamente l’angolo θ minimo
sarà quello corrispondente, nel CM, a particelle generate lungo la direzione
perpendicolare a quella di volo: e infatti esso corrisponde a θ∗.
Dal punto di vista fisico, i casi B < −1 e −1 < B < 0 sono equivalenti, nel
senso che in entrambi si ha un angolo minimo tra le due particelle. Per B < −1
quest’angolo minimo (θ̄) è > π/2, mentre per −1 < B < 0 è < π/2.6
Nei casi restanti vale B > 0, ossia si ha produzione in avanti. Qui si ha Casi B>0
β > β∗, per cui è la velocità della particella iniziale che domina: è come lan-
ciare una palla all’indietro da una Ferrari in corsa, gli spettatori vedranno

5Tale paragone classico funziona anche nel caso di velocità relativistiche finché ci limi-
tiamo a parlare del segno della velocità composta e non del suo modulo. Infatti, se v è la
velocità di trascinamento tra due sdr inerziali, ux la velocità di un corpo nel primo e u′x
quella nel secondo, la trasformazione relativistica è data da u′x = (ux − v)/(1 − v ux/c2).
Qui il denominatore è sempre positivo, in quanto si ha ux, v < c, perciò il segno di u′x è
unicamente determinato dal rapporto tra ux e v. Perciò chiaramente “sottrarre le velocità”
porta ad un risultato numericamente sbagliato, ma di segno giusto.

6Nota: θ̄ decresce man mano che B → 0, ma solo fino ad un certo punto. Per curiosità,
è possibile portare θ̄ a 0? Fissato B = 0 si ha β = β∗, per cui θ̄ = 2 arctan(1/γ). Possiamo
quindi aumentare γ, ma nel farlo, per mantenere la possibilità di produzione all’indietro,
dobbiamo agire sull’energia cinetica delle particelle prodotte, che è proporzionale alla dif-
ferenza tra la massa iniziale della particella che decade e la somma delle masse risultanti.
Per una differenza molto alta (potenzialmente infinita), ossia per particelle prodotte molto
veloci, si ha θ̄ → 0. Ciò corrisponde ad una situazione (molto strana) in cui tutti gli angoli
sono possibili, per cui a volte le particelle escono in versi opposti, e a volte (quasi) nello
stesso verso!
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una palla lanciata in avanti - seppur più lentamente. Risulta quindi sempre
possibile osservare un θ = 0: ciò corrisponde a due particelle generate sulla
direzione del moto, entrambe “in avanti” (con una molto più lenta dell’altra,
naturalmente).
In particolare, il caso B > 1 è simmetrico di quello B < −1: qui stavolta il caso
delle particelle lanciate perpendicolarmente alla direzione di volo massimizza
l’angolo.
Più interessante, invece, è il caso 0 < B < 1, dove sono presenti due massimi
nella funzione tan θ. Il caso θ∗ = π/2, delle particelle emesse perpendicolar-
mente, non corrisponde al θ massimo, ma ad un minimo locale dell’angolo
(molto vicino al massimo globale per B → 1). Cosa sta succedendo?
La motivazione è da ricercare nelle formule di trasformazione delle grandezze
relativistiche. Nel passaggio dal sistema di riferimento del CM a quello del
laboratorio, il momento lungo x̂ aumenta. È questo il motivo per cui, rappre-
sentando tutti i possibili momenti osservati su un piano (px, py) si ottiene un
ellisse (come visto in (7)) e non una circonferenza (come accade nel caso new-
toniano). Intuitivamente ciò ha a che fare col fatto che c è una velocità limite,
per cui quando si è molto vicini a c è necessario aumentare di molto il mo-
mento per aumentare di poco la velocità, e per arrivare a c servirebbe portare
il momento all’infinito7. Tale “dilatazione” del momento lungo la direzione
del moto ha un’importante conseguenza riguardo agli angoli. In genere, se
una delle due particelle viene prodotta in direzione prossima alla linea di volo,
l’altra avrà una componente lungo y piccola, e perciò subirà in pieno l’effetto
di “dilatazione” del momento, venendo lanciata quasi perpendicolarmente alla
direzione di volo. In un certo range dei parametri tale effetto domina e produce
un angolo massimo tra le due particelle (come calcolato).
Per avere una maggiore intuizione dei risultati è possibile giocherellare con
i parametri tramite un apposito Notebook di Mathematica disponibile qui:
https://drive.google.com/open?id=14PsiQwlnCtQpnspOliljkQV5xkWRbeHr.

1.2 Urti
Con urto intendiamo un processo in cui due o più particelle interagiscono
tra loro, scambiandosi momento o scomponendosi per generare una cascata di
particelle differenti.
Si parla di urti elastici se le particelle finali hanno la stessa natura di quelle Categorizzazione degli

urtiiniziali (ossia se l’unico effetto dell’urto è lo scambio di momento), mentre gli
urti anelastici sono il caso più generale in cui ciò non avviene.
Sono detti urti esclusivi quelli in cui si è a conoscenza della natura di tutte
le particelle iniziali e finali, mentre sono inclusivi quelli in cui mancano delle
informazioni sulle particelle finali.
Trattiamo brevemente il caso di un urto anelastico: 1 + 2→ 3 + · · ·+N . Proprietà generali

7È un po’ come se la massa dell’oggetto aumentasse. Tuttavia questo concetto di “massa
relativistica”, seppur popolare in passato, è caduto in disuso, in quanto abbastanza sco-
modo e generatore di fraintendimenti - per esempio non è chiaro quale sia il rapporto tra
questa grandezza e la massa gravitazionale. Lo riporto qui per completezza (e per aiutare
l’intuizione), ricordando che per “massa” in relatività si intende la massa a riposo, che è un
invariante.
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Come nel caso dei decadimenti, si ha la conservazione dell’energia:

E1 + E2 = E3 + · · ·+ EN

e del trimpulso:
p̄1 + p̄2 = p̄3 + · · ·+ p̄N

Ovviamente si conservano gli invarianti scalari, come la contrazione del quadrim-
pulso pµpµ, o i prodotti pseudoscalari tra quadrimpulsi pi · pj:

pi ·pj = EiEj−p̄ip̄j ≥
dis. Schwarz

EiEj− |p̄i| |p̄j| ≥ EiEj−
√
E2
i −m2

i

√
E2
j −m2

j

(14)
Partendo ora dalla disuguaglianza:

(miEj −mjEi)2 ≥ 0⇒ m2
iE

2
j +m2

jE
2
i − 2mimjEiEj ≥ 0

m2
iE

2
j +m2

jE
2
i − 2mimjEiEj +m2

im
2
j + E2

iE
2
j ≥ m2

im
2
j + E2

iE
2
j

(EiEj −mimj)2 ≥ E2
i (E2

j −m2
j)−m2

i (E2
j −m2

j)
(EiEj −mimj)2 ≥ (E2

i −m2
i )(E2

j −m2
j)

EiEj −
√
E2
i −m2

i

√
E2
j −m2

j ≥ mimj (15)

e completando la catena di 14 con il risultato appena ottenuto in 15, si ottiene:

pi · pj ≥ mimj (16)

Definiamo ora la grandezza massa invariante come: Massa invariante

W 2 = s = (p1 + p2 + · · ·+ pN)2 = p2
1 + p2

2 + · · ·+ p2
N + 2

∑
i<j

pi · pj

≥
(∗)

N∑
i=1

m2
i + 2

∑
ij

mimj = (m1 +m2 + · · ·+mN)2

dove in (∗) è stata usata la relazione 16 appena ricavata.
In un urto la massa invariante rappresenta la massa “disponibile” per creare
nuove particelle.
Esaminiamo il caso di una particella 1 che si scontra con un’altra particella 2
inizialmente ferma rispetto al sdr del laboratorio. Indicando con l’asterisco *
le grandezze relative al sdr del CM come al solito, i quadrimpulsi sono dati da:

p∗1 = (E∗1 , p∗, 0, 0) p1 = (E1, p1, 0, 0)
p∗2 = (E∗2 ,−p∗, 0, 0) p2 = (m2, 0, 0, 0)

Da cui è possibile calcolare le masse invarianti:

W 2 = (E∗1 + E2)2 ⇒ W = E1 ∗+E2∗ (Dal sdr del CM)

W =
√

(E1 +m2)2 − p2
1 =

√
m2

1 +m2
2 + 2m2E1 (Dal sdr del labo)

Per lo stesso sistema, naturalmente, i due calcoli daranno risultati identici (W
è invariante). Tuttavia notiamo che nel sdr del CM W ∼ E1, mentre nel sdr
del labo W ∼

√
E1. Perciò, se si dispone di un acceleratore capace di produrre
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particelle ad un energia massima fissata E1, conviene far scontrare due fasci
opposti (come “visto” dal CM) rispetto a far scontrare un fascio contro un
target fisso (come “visto” dal labo), poiché nel primo caso l’energia disponibile
a produrre nuove particelle è notevolmente superiore.
Vi sono altri invarianti, detti invarianti di Mandelstam. Dato un urto Invarianti di Mandel-

stam1 + 2→ 3 + 4, detti i quadrimpulsi p1 + p2 → p3 + p4 si ha:

W 2 =s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p4 − p2)2

u = (p1 − p4)2 = (p3 − p2)2

1.3 Urti elastici
Consideriamo più nel dettaglio il caso di un urto elastico: 1 + 2 → 1′ + 2′.
Poniamoci nel sdr del CM. I quadrimpulsi prima dell’urto sono:

p∗1 = (E∗1 , p∗, 0, 0); p∗2 = (E∗2 ,−p∗, 0, 0); p∗1 + p∗2 = (E∗1 + E∗2 , 0, 0, 0)

da cui la massa invariante:

s = (p∗1 + p∗2)2 = (E∗1 + E∗2)2 = (
√
m2

1 + p∗2 +
√
m2

2 + p∗2)2

Dopo l’urto, posto il quadrimpulso |p∗′1 | = |p∗′2 | = p∗
′ , dalla conservazione

dell’energia si ricava che:

E∗1+E∗2 = E∗
′

1 +E∗′2 ⇒
√
m2

1 + p∗2+
√
m2

2 + p∗2 =
√
m2

1 + p∗′2+
√
m2

2 + p∗′2 ⇔ p∗ = p∗
′

Poiché il quadrimpulso rimane lo stesso prima e dopo l’urto, anche le singole
energie (misurate nel sdr del CM) saranno uguali: E∗1 = E∗

′
1 e E∗2 = E∗

′
2 .

Detto θ∗ = θ∗1 = θ∗2 − π l’angolo d’uscita della prima particella, si possono
scrivere i quadrimpulsi dopo l’urto come:

p∗
′

1 = (E∗′1 , p
∗ cos θ∗, p∗ sin θ∗, 0); p∗

′

2 = (E∗′2 ,−p∗ cos θ∗,−p∗ sin θ∗, 0)

Calcoliamo quindi la massa invariante:

sCM = (p∗′1 + p∗
′

2 )2 =
(√

m2
1 + p∗2 +

√
m2

2 + p∗2
)2

(17)

e il secondo invariante di Mandelstam:

tCM = (p∗′2 − p∗2)2 = (E∗′2 − E∗2 ,−p∗(cos θ∗ − 1),−p∗ sin θ∗, 0) =
= (E∗′2 − E∗2)2︸ ︷︷ ︸

0

−p∗2(cos θ∗ + 1− 2 cos2 θ∗ + sin2 θ∗)︸ ︷︷ ︸
−2p∗2 (1−cos θ∗)

(18)

perciò t = −2p∗2(1− cos θ∗).
Passando al sdr del laboratorio, dalla conservazione dell’energia si ha:

E1 +m2 = E ′1 + E ′2 ⇒ E ′1 − E1 = m2 − E ′2
Calcoliamo la massa invariante:

slab = (p1 + p2)2 = (E1 +m2, p1, 0, 0)2 = (E1 +m2)2 − p2
1 =

= E2
1 +m2

2 + 2m2E1 −p2
1 = m2

1 +m2
2 + 2m2E1 (19)
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e il secondo invariante di Mandelstam:

tlab = (p′2 − p2)2 = p2′
2 + p2

2 − 2p′2 · p2 = m2
2 +m2

2 − 2E ′2m2 =
= 2m2( m2 − E ′1 ) = 2m2(E ′1 − E1) (20)

Possiamo ora sfruttare l’invarianza di s ed eguagliare i risultati ottenutin in
17 e 19:(√

m2
1 + p∗2 +

√
m2

2 + p∗2
)2

= m2
1 +m2

2 + 2m2E1

⇒ 2p∗2 +��m
2
1 +@@m

2
2 + 2

√
m2

1 + p∗2
√
m2

2 + p∗2 =��m
2
1 +@@m

2
2 + 2m2E1 =

=
√
m2

1 + p∗2
√
m2

2 + p∗2 = m2E1 − p∗
2

⇒
x2

(p∗2 +m2
1)(p∗2 +m2

2) = m2
2E

2
1 + p∗

4 − 2p∗2
m2E1 =

=��p
∗4 + p∗

2(m2
1 +m2

2)2 +m2
1m

2
2 = m2

2E
2
1 +��p

∗4 − 2p∗2
m2E1

⇒ p∗
2 = m2

2(E2
1 −m2

1)
m2

1 +m2
2 + 2m2E1

(21)

Uguagliando invece i risultati ottenuti per t in 18 e 20:

�2m2(E ′1 − E1) = −�2p∗
2(1− cos θ∗)⇒ E ′1 = E1 −

p∗
2

m2
(1− cos θ∗) (22)

Il valore minimo è per cos θ∗ = −1, e il massimo per cos θ∗ = +1: Energia massima e
minima dopo l’urto

E ′1,max = E1 (23)

E ′1,min = E1 −
2 p∗2

m2
=

(21)
E1 − 2 m2(E2

1 −m2
1)

m2
1 +m2

2 + 2m2E1
= (24)

= E1(m2
1 +m2

2) + 2m2
1m2

m2
1 +m2

2 + 2m2E1
(25)

Esaminiamo l’energia cinetica, T = E −m, nel caso minimo:

T ′1,min = E1(m2
1 +m2

2) + 2m2
1m2

m2
1 +m2

2 + 2m2E1
−m1 = (26)

=
2m2

1m2 + E1(m2
1 +m2

2) −m1m
2
1 −m1m

2
2 −2m1m2E1

m2
1 +m2

2 + 2m2E1
=

=
E1(m1 −m2)2 − m1

(m1−m2)2︷ ︸︸ ︷
(m2

1 +m2
2 − 2m1m2)

m2
1 +m2

2 + 2m2E1
=

= (E1 −m1)(m1 −m2)2

m2
1 +m2

2 + 2m2E1
(27)

La frazione di energia cinetica rispetto a quella iniziale è perciò:

T ′1,min
Tiniz

= 1
���

���(E1 −m1)
���

���(E1 −m1)(m1 −m2)2

m2
1 +m2

2 + 2m2E1
= (m1 −m2)2

m2
1 +m2

2 + 2m2 E1
(28)
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Nel caso classico, imponendo la conservazione dell’energia e del momento tra
i momenti appena precedenti e successivi all’urto, si ricava:

v′1 = m1 −m2

m1 +m2
v1 ⇒

T ′

Tiniz
=

1
2m1v

′2
1

1
2m1v2

1
= (m1 −m2)2

(m1 +m2)2 = (m1 −m2)2

m2
1 +m2

2 + 2m2 m1
(29)

Si ha perciò una differenza fondamentale (evidenziata in verde) tra la 28 e la 29:
non è solo la massa delle particelle a partecipare alla frazione di energia cinetica
della prima particella, ma anche l’energia che essa aveva prima dell’urto. In un
caso estremo, se E1 > m2 � m1 (particella leggera ma molto energetica), si
ha che T ′/Tin → 0, mentre la formula classica darebbe un risultato T ′/Tin →
1. Classicamente, una particella leggera che sbatte contro un muro rimbalza
mantenendo circa la stessa energia cinetica di prima, ma se essa viaggia ad una
velocità relativistica è possibile che trasmetta tutta la sua energia al muro e lo
metta in moto, fermandosi di conseguenza (stiamo ammettendo una particella
che abbia - in sé - un’energia cinetica maggiore dell’energia di massa - altissima
- del muro).

Esaminiamo ora gli angoli risultanti dall’urto, misurati nel sdr del labora- Angoli nel sdr del lab-
oratoriotorio. Similmente al caso dei decadimenti, partiamo ricavando le componenti

dei quadrimomenti nel sdr del laboratorio tramite le trasformazioni di Lorentz:

p′α,x = γ(p′α,x + βE∗
′

α ) = γ(p∗ cos θ∗α + βE∗α); p′α,y = p∗ sin θ∗α; α = 1, 2

Riarrangiando i termini:(
p′α,x
γ
− βE∗α

)
= p∗ cos θ∗α; p′α,y = p∗ sin θ∗α

Elevando al quadrato e sommando membro a membro:

1
γ

(
p′α,x − βγE∗α

)2
+ p′2α,y = p∗

2 ⇒ 1
(γp∗)2

(
p′α,x − βγE∗α

)2
+
p′2α,y
p∗2 = 1

ossia l’equazione di un’ellisse sul piano (pα,x, pα,y), di semiasse lungo x sx = γp∗,
e con centro in (d = βγE∗

′
α , 0).

La condizione di produzione in avanti si ha per: Produzione in avanti

d > sx ⇒ β�γE
∗′
α > �γp

∗ ⇒ β >
p∗

E∗′α
= β∗

′

α (30)

Se la particella 2 è inizialmente ferma rispetto al sdr del laboratorio, allora i Urto contro un
bersaglio fermoquadrimomenti saranno:

p2 = (m2, 0, 0, 0); p∗2 = (E∗2 ,−p∗, 0, 0)

Applicando le trasformazioni di Lorentz a p∗2:

p∗,x2︸︷︷︸
−p∗

= γ(p2,x︸︷︷︸
0

−β E2︸︷︷︸
m2

) = −γβm2 ⇒ p∗ = m2γβ (31)

Sostituendo 31 nella condizione di produzione in avanti 30:

β >
m2γβ

E∗′α
⇒ E∗

′

α > γm2
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Nota: il risultato ottenuto in 31 è coerente con la formula 21. Infatti, tenendo
conto che:

β = ptot
Etot

= p1

m2 + E1
; γ2 = 1

1− β2 ; p2
1 = E2

1 +m2
1

si ha:

p∗
2 = m2

2γ
2β2 = m2

2
β2

1− β2 =
m2

2
p2

1

���
���(m2 + E1)2

(m2 + E1)2 − p2
1

���
���(m2 + E1)2

=

= m2
2p

2
1

m2
2 + E2

1 + 2m2E1 − p2
1

= m2
2(E2

1 −m2
1)

m2
2 +@@E

2
1 + 2m2E1 −@@E

2
1 +m2

1
= (21)

Esplicitiamo la relazione di produzione in avanti per le singole particelle. Per
α = 1:

Eα′

1 > γm2 ⇒
√
m2

1 + p∗
2
> γm2

x2
−−→
(31)

m2
1 + (βγm2)2 > γ2m2

2

m2
1 > ��γ

2m2
2���

��(1− β)2) = m2
2

ossia si ha produzione in avanti se m1 > m2.
Per α = 2:

Eα′

2 > γm2 ⇒
√
m2

2 + p∗2 > γm2
x2
−−→
(31)

m2
2 + γ2β2m2

2 > γ2m2
2

= m2
2 > ��γ

2m2
2��

���(1− β)2 = m2
2 ⇒ θ(2)

max = π

2
ossia la particella 2 (inizialmente ferma) non potrà mai essere emessa ad un
angolo maggiore di π/2 (cosa che equivarrebbe a dirigersi nella zona da cui la
particella 1 è arrivata, rompendo perciò la conservazione del momento).

2 Elettromagnetismo covariante
L’obiettivo è ora quello di riscrivere le equazioni dell’elettromagnetismo in
forma manifestamente covariante, ossia tramite relazioni tra quadrivettori che
trasformano tramite Lorentz.
Prima di procedere, tuttavia, conviene adottare delle unità di misura più
agevoli per le considerazioni di fisica fondamentale. Le unità del Sistema In-
ternazionale, infatti, sono nate per semplicità sperimentale: contengono così
diverse arbitrarietà che portano a diverse costanti fastidiose in mezzo alle for-
mule.
Per esempio, l’unità elettromagnetica fondamentale del SI (sistema MKS,
metro-kilogrammo-secondo) è l’Ampere: tale scelta risiede nel fatto che le cor-
renti sono facili da misurare in laboratorio, e perciò conviene partire da esse
per definire tutto il resto (cosa valida ancor oggi, e a maggior ragione due secoli
fa). L’Ampere è definito come la corrente che se fatta scorrere attraverso due
fili paralleli posti a 1m di distanza l’uno dall’altro nel vuoto genera una forza
tra di essi di modulo 2 · 10−7N per unità di lunghezza.
Scrivendo tale legge come:

F

l
= µ0

2π
i1i2
d
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si giunge a definire la costante di permeabilità magnetica del vuoto
µ0 = 4π ·10−7mN

A2 . Perché 2·10−7? Perché il 2 si semplifica in diverse formule, e
con il 10−7 si rientra nell’ordine di grandezza dei fenomeni (celle elettrolitiche,
prime batterie) che venivano osservati all’epoca. Anche la definizione di µ0
segue da ragionamenti simili.
Tale semplicità di misura in laboratorio, tuttavia, parte da una scelta che è
completamente arbitraria, che avrà conseguenze sul resto delle equazioni.
Osservando infatti che q = i/∆t, l’Ampere porta alla definizione del Coulomb.
Tuttavia, per la scelta fatta prima, la legge di Coulomb dovrà per forza con-
tenere un fattore di proporzionalità, che chiamiamo ke:

F = ke
q1q2

r2 ; ke := 1
4πε0

dove la costante dielettrica del vuoto ε0µ0 = 1/c2.
Quando vogliamo andare a fare considerazioni di fisica fondamentale, tuttavia,
si riscontrano due problemi:

1. Tenere ε0, µ0 e c è ridondante, in quanto non sono quantità indipendenti.
Ciò non fa altro che sporcare le equazioni. Di più: ε0 e µ0, pur essendo
costanti di proporzionalità, hanno unità di misura, cosa che è poco ele-
gante e fa confondere di più. Ciò potrebbe essere giustificato se fossero
davvero costanti fondamentali della natura, ma non lo sono: sono solo
artefatti di una scelta che è stata necessaria per semplificare la presa dati
in laboratorio.

2. Lo studio della relatività porterà a concludere che campo elettrico e mag-
netico sono due aspetti dello stesso fenomeno. Tuttavia, l’arbitrarietà del
SI non ci permette di notare ad occhio questa simmetria.

Queste considerazioni portano all’introduzione delle unità di Gauss, che
fanno parte del più esteso sistema CGS (centimetro-grammo-secondo). Os-
serviamo subito le conseguenze sulle equazioni.
Le equazioni di Maxwell (includendo la forza di Lorentz) assumono nel sistema
MKS la seguente forma:

~∇ · ~ES = ρS
ε0

~∇× ~ES = − ∂

∂t
~BS (32)

~∇ · ~BS = 0 ~∇× ~BS = µ0 ~JS + 1
c2
∂

∂t
~ES

~F = eS( ~ES + ~v × ~BS)

Nel sistema di Gauss, invece, si riscrivono come:

~∇ · ~EG = 4πρG ~∇× ~EG = −1
c

∂

∂t
~BG (33)

~∇ · ~BG = 0 ~∇× ~BG = 4π
c
~JG + 1

c

∂

∂t
~EG

~F = eG

(
~EG + ~v

c
× ~BG

)

Dimostriamo, innanzitutto, l’equivalenza tra le due scritture, e motiviamo i
passi che portano da una all’altra.
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L’idea di base del sistema di Gauss è quella di modificare l’unità di misura
della carica in modo da rimuovere il coefficiente ke dell’equazione di Coulomb:

~F = 1
4πε0

q1q2

r2 →
q̃1q̃2

r2

Detta eS una carica misurata in Coulomb (sistema MKS) e eG il suo equiva-
lente nel sistema di Gauss (misurato in una nuova unità che chiamiamo Stat-
coulomb), si ha perciò:

eG = eS√
4πε0

⇒ ρG = ρS√
4πε0

; jG = jS√
4πε0

; EG =
√

4πε0ES

(la modifica si propaga naturalmente su tutte le unità di misura derivate).
Da ke = 1 segue che ε0 = 1/(4π), ed è un numero puro. Sostituendo nella
relazione di c (che manteniamo invariata per definizione nel sistema di Gauss):

c2 = 1
µ0ε0

= 4π
µ0
⇒ µ0 =

√
4π
µ0

Nota: qua c non contiene unità di misura, in quanto µ0 ed ε0 sono, nel sistema
di Gauss, numeri puri.
Abbiamo ora tutto il necessario per ricavare la modifica dell’unità del campo
magnetico:

BS = FS
ISlS

; BG = FG
IG lG

⇒ BS

BG

= IG
IS

= 1√
4πε0

⇒ BG =
√

4πε0BS

Utilizzando la relazione tra c, ε0 e µ0:

ε0 = 1
µ0c2 ⇒ BG =

√
4π
µ0c2BS = 1

�c

4π
µ0

Spostiamo ora il fattore c a tutte le equazioni che contengono il campo mag-
netico, lasciando come trasformazione:

BG =
√

4π
µ0
BS = c

√
4πε0BS

Per lo spostamento di c, la legge di Lorentz diventerà, di conseguenza:

~F = eS( ~ES + ~v × ~BS) = eS( ~ES + ~v

c
× (c ~BS))

e ora basta semplicemente sostituire le altre relazioni:

~F =
√

4πε0eG

 ~EG√
4πε0

+ ~v

c
× c BG√

4π/µ0


Il campo magnetico B è definito dalla relazione F = B l I ⇒ B = F/(I l).

Poiché la ridefinizione della carica ha permesso di eliminare gli ε0 da ogni
equazione, la relazione di sopra permette di rimuovere anche i µ0, lasciando
solo c.
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Partiamo quindi dalle equazioni di Maxwell nel sistema di Gauss e, applicando
le sostituzioni appena visto, riconduciamole alla forma dell’MKS:

~∇ · ~EG = 4πρG ⇒
√

4πε0~∇ · ~ES = 4π ρS√
4πε0

⇒ ~∇ · ~ES = ρS
ε0

(34)

~∇ · ~BG = 0⇒
√

4π
µ0
~∇ · ~BS = 0⇒ ~∇ · ~BS = 0 (35)

~∇× ~EG = −1
c

∂

∂t
~BG ⇒

√
4πε0~∇× ~ES = −1

c

√
4π
µ0

∂

∂t
~BS ⇒ ~∇× ~ES = − ∂

∂t
~BS

(36)

~∇× ~BG = 4π
c
~JG + 1

c

∂

∂t
~EG ⇒

√
4π
ε0
~∇× ~BS = 4π

c

1√
4πε0

~JS + 1
c

√
4πε0

∂

∂t
~ES ⇒

⇒ ~∇× ~BS =

√
µ2

0ε0√
ε0

~JS + 1
c

√
µ0ε0

∂

∂t
~ES ⇒ ~∇× ~BS = µ0 ~JS + 1

c2
∂

∂t
~ES

(37)

~F = eS√
4πε0

(√
4πε0 ~ES + ~v

c
×
√

4π
µ0

~BS

)
= eS

(
~ES + v

c
× (c ~BS)

)
(38)

2.1 Potenziali
Il primo passo per ottenere una scrittura covariante è riscrivere le 38 mediante
potenziali.
Si definisce potenziale vettore ~A la quantità:

~B = ~∇× ~A(~x, t) =


∂x2A3 − ∂x3A2

∂x3A1 − ∂x1A3

∂x1A2 − ∂x2A1


Sostituendola nella III eq. di Maxwell si ottiene:

~∇× ~E + 1
c

∂

∂t
~∇× ~A = 0⇒ ~∇×

(
~E + 1

c

∂

∂t
~A

)
︸ ︷︷ ︸

−~∇ϕ(~x,t)

= 0

(si è sfruttata la proprietà per cui il rotore di un gradiente è nullo). ϕ è detto
potenziale scalare, e consente di giungere alla scrittura:

~E = −1
c

∂

∂t
~A− ~∇ϕ→ Ei = − ∂

∂x0A
i − ∂

∂xi
ϕ

Si nota che i potenziali non sono univocamente definiti. Infatti, detta χ una Trasformazioni di
Gaugefunzione scalare qualsiasi, si possono definire dei potenziali trasformati:

~A′ = ~A+ ~∇χ(~x, t); ϕ′ = ϕ− 1
c

∂

∂t
χ(~x, t)

che generano gli stessi campi ~E e ~B:
~B′ = ~∇× ~A′ = ~∇× ~A+����

�~∇× (~∇χ(~x, t)) = ~B

~E ′ = −1
c

∂

∂t
~A′ − ~∇ϕ′ = −1

c

∂

∂t
~A−

�
�
�
��1

c

∂

∂t
~∇χ− ~∇ϕ+

�
�
�
��1

c

∂

∂t
~∇χ = ~E
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Tali trasformazioni sono dette trasformazioni di Gauge.
Definiamo allora il quadripotenziale elettromagnetico Aµ = (ϕ, ~A). Pos- Quadripotenziale elet-

tromagneticosiamo riscrivere le trasformazioni di Gauge per il quadripotenziale come:

A′µ = Aµ − ∂µχ⇒


A′0 = ϕ′ = ϕ− 1

c

∂χ

∂t

A′i = Ai − ∂iχ = Ai + ∂iχ = Ai + ∂

∂xi
χ

Possiamo ora definire il tensore del campo elettromagnetico F µν come:

F µν = ∂µAν − ∂νAµ

Osserviamo subito che si tratta di un tensore antisimmetrico:

F µν = ∂µAν − ∂νAµ = − (∂νAµ − ∂µAν)︸ ︷︷ ︸
F νµ

⇒ F µν = −F νµ

Inoltre le componenti sulla diagonale sono ovviamente nulle. Se µ = ν, infatti:

F µν = ∂µAν − ∂νAµ = ∂µAµ − ∂µAµ = 0

Esaminiamone le restanti componenti:

F i0 = ∂iA0 − ∂0Ai = − ∂
i
A0 − ∂0Ai = − ∂ϕ

∂xi
− 1
c

∂

∂t
Ai = Ei

Esplicitando gli indici:

F 10 = E1 = Ex := E1; F 20 = E2 = Ey := E2; F 30 = E3 = Ez := E3

Nota: i termini E1, E2, E3 sono introdotti per comodità di notazione, e non
sono le componenti di un ipotetico quadrivettore covariante del campo elet-
trico (che non esiste, in quanto ~E è un trivettore). Analogamente si avrà per
B1, B2, B3.
Esaminando gli altri elementi:

F ij = ∂iAj − ∂jAi

si giunge a:

F 12 = ∂1A2−∂2A1 = −∂1A
2−∂2A

1 = − ∂

∂x1A
2+ ∂

∂x2A
1 = −(~∇× ~A)3 = −Bz = B3

Analogamente:

F 13 = ∂1A3 − ∂3A1 = − ∂

∂x1A
3 + ∂

∂x3A
1 = (~∇× ~A)2 = By = B2

F 23 = ∂2A3 − ∂3A2 = − ∂

∂x2A
3 + ∂

∂x3A
2 = −(~∇× ~A)1 = −Bx = B1

Questi risultati possono essere scritti più sinteticamente come F ij = −εijkBk,
dove si fa uso del simbolo di Levi-Civita εijk, per cui ε123 = 1, se vi sono indici
ripetuti è nullo, e ogni scambio degli indici ne cambia il segno.
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In ogni caso, i risultati trovati bastano per risalire alla forma completa di F µν

(i termini mancanti si ricavano sfruttando l’antisimmetria):

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


Dimostriamo ora un’identità del calcolo tensoriale che ci servirà per ricavare
le equazioni di Maxwell omogenee.
Sia Aµν un tensore antisimmetrico (vale Aµν = −Aνµ e Sµν un tensore sim- Contrazione di tensori

simmetrici e antisim-
metrici

metrico (vale Sµν = Sνµ). Allora la loro contrazione è data da:

AµνS
µν = −AνµSνµ =

(∗)
−AµνSµν ⇒ 2AµνSµν = 0⇒ AµνS

µν

Nel passaggio segnato (∗) si è sfruttata una proprietà degli indici muti: poiché
AνµS

νµ è una contrazione (cioè dà origine ad uno scalare), essa non contiene
indici liberi (cioè indici non ripetuti che compaiono in entrambi i membri
dell’equazione), ma solo indici muti. In particolare, il risultato di un’operazione
non dipende dal nome degli indici muti: per cui possiamo scambiarli senza
colpo ferire. Il che è comodo poiché possiamo spostare tale risultato al primo
membro, ottenendo la conclusione (che risparmia la scrittura di 16 addendi).
Consideriamo ora la relazione:

εµνρσ∂
νF ρσ = 0 (39)

da cui derivano le equazioni di Maxwell omogenee.
Prima di tutto dimostriamola:

εµνρσ∂
νF ρσ = εµνρσ∂

ν(∂ρAσ − ∂σAρ) = εµνρσ∂
ν∂ρAσ − ε

µν ρσ ∂
ν∂ σ A

ρ =

=
(∗)
εµνρσ∂

ν∂ρAσ − ε
µν σρ ∂

ν∂
ρ
A σ = 2 εµνρσ︸ ︷︷ ︸

A

∂ν∂ρAσ︸ ︷︷ ︸
S

= 0

In (∗) si effettua nuovamente il trucco di cambiare nome agli indici, scam-
biando ρ e σ. Notando poi che −ε

µν σρ = +ε
µν ρσ (per come è definito ε) si

giunge all’espressione finale. Notiamo quindi che εµνρσ è antisimmetrico (dalla
definizione), mentre ∂ν∂ρAσ è un tensore simmetrico (si può cambiare l’ordine
delle derivate seconde per Schwarz). Ma questa è esattamente la situazione
dell’identità tensoriale dimostrata poco prima, e che quindi possiamo appli-
care, completando la dimostrazione.
Esaminiamo ora, nel dettaglio, le componenti, partendo dal caso µ = 0. In
questo caso νρσ devono essere una permutazione dei valori 123 (abbiamo fis-
sato µ = 0, e se ci fosse un indice ripetuto ε sarebbe 0) e quindi le chiameremo
ijk, per la convenzione degli indici latini. In definitiva avremo perciò 3! = 6
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addendi (numero di permutazioni di 3 elementi). Scriviamoli esplicitamente:

ε0ijk∂
iF jk = ε0123∂

1F 23 + ε0231∂
2F 31 + ε0312∂

3F 12+
+ ε0132∂

1F 23 + ε0213∂
2F 13 + ε0321∂

3F 21 =
=
(∗)

2(ε0123∂
1F 23 + ε0231∂

2F 31 + ε0312∂
3F 12) =

= 2
[
(+1) ∂

∂x1 (−B1) + (+1) ∂

∂x2 (−B2) + (+1) ∂

∂x3 (−B3)
]

=

= −2~∇ · ~B = 0⇒ ~∇ · ~B = 0

Nel passaggio segnato (∗) si attua uno scambio degli indici alla seconda riga, in
modo da trasformarla in una copia identica della prima e sommare in colonna.
Ciò è dato dal fatto che sia F µν che εµνρσ sono tensori antisimmetrici, per cui,
per esempio:

ε
01 32 ∂

1F 23 = (−ε01 23 )(−F 32 ) = ε0123F
32

ossia il primo termine della seconda riga si trasforma nel primo della prima
riga (e conti analoghi valgono per gli altri).
Per ricavare l’altra equazione di Maxwell omogenea è necessario prima di-
mostrare un’altra identità tensoriale: Relazione tra Levi-

Civita e Kronecker
ε
i jk

ε
jk l = +2δ l

i

Possiamo dimostrarla per calcolo diretto. jk possono assumere valori da 1 a 3,
ma non possono essere uguali (sennò ε = 0). Perciò resteranno solo 6 addendi:

εijkε
jkl = εi23ε

23l + εi32ε
32l︸ ︷︷ ︸

(1)

+ εi13ε
13l + εi31ε

31l︸ ︷︷ ︸
(2)

+ εi12ε
12l + εi21ε

i12︸ ︷︷ ︸
(3)

(Si noti che gli indici i e l, essendo liberi, non partecipano alle somme)
Il termine (1) è 6= 0 solo se i = l = 1 (altrimenti una delle due ε = 0 e il
prodotto si annulla). In tal caso si avrà (1) = 2. Analogamente, il termine (2)
è pari a 2 solo se i = l = 2, e (3) = 2 se e solo se i = l = 3, e 0 in tutti gli altri
casi.
Perciò la somma finale sarà nulla se i 6= l, e pari a 2 in tutti e tre i casi in cui
i = l. Tale risultato è perciò pari a 2δli, ricordando la definizione della delta di
Kronecker.
Possiamo ora affrontare più agevolmente i restanti casi di (39). Sia ora µ =
i = 1, 2, 3. Allora uno degli altri indici ν, ρ, σ deve essere 0, o avremmo una
ripetizione che annulla ε. Abbiamo quindi 3 possibilità, e il risultato sarà la
somma tra tutte:

εiνρσ∂
νF ρσ = εi0ρσ∂

0F ρσ + εiν0σ∂
νF 0σ + εiνρ0∂

νF ρ0 =

Conviene ora effettuare uno scambio di indici in ε (cambiando di conseguenza
il segno) in modo da portare lo 0 in prima posizione. I restanti indici νρσ
assumono valori tra 1 e 3, quindi li chiameremo ijk. Usiamo poi il fatto che
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ε0ijk = εijk per ridurre la dimensione di ε.

= −ε0iρσ∂0F ρσ + ε0iνσ∂
νF 0σ − ε0iνρ∂νF ρ0 =

= −εijk∂0F jk + εijk∂
jF 0k − εijk∂jF k0 =

= −εijk∂0F jk − εijk∂jF k0 − εijk∂jF k0 = −εijk∂0F jk − 2εijk∂jF k0 =

dove abbiamo usato, nuovamente, l’antisimmetria di F µν . Ora sostituiamo le
componenti di F , osservando che F jk = −εjklBl e F k0 = Ek (come ricavato
inizialmente).

= εijkε
jkl∂0Bl − 2εijk∂jEk = 2δli∂0Bl − 2εijk∂jEk =

(∗)
2δil∂0Bl + 2εijk∂jEk =

= 2∂0Bi + 2(~∇× ~E)i = 0⇒ ~∇× ~E = −1
c

∂

∂t
~B

Nel passaggio segnato (∗) si abbassano gli indici di δli, ∂0 e ∂j, cambiando di
segno in ogni occasione. Chiaramente il primo termine non cambia di segno (−·
− = +), mentre il secondo sì. Al passaggio successivo, l’effetto di moltiplicare
δil∂0Bl è quello di annullare tutti i termini per cui l 6= i, per cui alla fine
rimarranno solo le componenti Bi. Il risultato segue ricordando la relazione
tra simbolo di Levi-Civita e prodotto vettore:

c = a× b⇒ ci = εijka
jbk

Prima di passare alle equazioni di Maxwell non omogenee è necessario intro-
durre un nuovo quadrivettore: la quadricorrente, definita come: Quadricorrente

jµ = (cρ,~j)

Dimostriamo che si tratta di un quadrivettore.
Un qualsiasi sistema di particelle ha una carica ben definita, il cui valore è
definito come la misura ottenuta in un sdr rispetto al quale le particelle sono
in quiete. Ciò fa sì che la carica sia (come la massa) un invariante. Defini-
amo di conseguenza la densità di carica nel sdr in quiete ρ0, pari al rapporto
tra carica invariante e volume da essa occupato (misurato nel sdr in cui le
particelle sono ferme). Nota: un altro sdr in moto rispetto al primo misurerà
un volume diverso (per la contrazione delle lunghezze), e di conseguenza una
diversa densità di carica, che chiamiamo ρ.
Definiamo ora la quadricorrente come jµ = ρ0u

µ = γ(v)(ρ0c, ρ0~v), dove uµ è
la quadrivelocità delle cariche in moto, e v è la loro trivelocità. La jµ così
definita è automaticamente un quadrivettore (si tratta di uno scalare moltipli-
cato per un quadrivettore), e perciò non ci resta altro che dimostrare che tale
definizione coincida con quella data precedentemente (jµ = (cρ,~j). Vogliamo
cioè dimostrare che ρ = γ(v)ρ0 e che ~j = γ(v)ρ0~v = ρ~v.
Consideriamo perciò un volume infinitesimo di carica che si muove a velocità
~v nel sdr del laboratorio. Poniamoci nel sdr del CM, dove le cariche sono
in quiete, e misuriamo il volume come V ∗ = ∆x∗∆y∗∆z∗, con una carica
totale che sarà data da q = ρ0V

∗. Supponiamo che il movimento avvenga
lungo l’asse x̂ per semplificare i conti, e passiamo ora al sdr del laborato-
rio. Per contrazione delle lunghezze si avrà: ∆x = ∆x∗/γ(v), ∆y = ∆y∗ e
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∆z = ∆z∗. Il volume nel sdr del laboratorio (dove le cariche sono in moto) è
quindi V = ∆x∆y∆z = V ∗/γ(v), e la densità di carica diviene:

ρ = q

V
= ρ0V

∗(
V ∗

γ(v)

) = γ(v)ρ0

che è proprio quello che volevamo dimostrare.
Per quanto riguarda~j = ρ~v basta applicare la definizione di densità di corrente.
Consideriamo la carica infinitesima di prima che attraversa un’area ∆y∆z in
un tempo ∆t. Allora:

| ~J | = I

A
= ρ∆x∆y∆z

∆t
1

∆y∆z = ρ
∆x
∆t = ρ|~v|

e basta moltiplicare ambo i membri per il versore parallelo alla velocità per
ottenere ~j = ρ~v.
Le equazioni di Maxwell non omogenee derivano direttamente dalla relazione:

∂µF
µν = 4π

c
jν

Esaminiamone le componenti. Per ν = 0, sostituendo i termini di F µ0 = Eµ si
ha:

∂µF
µ0 = ∂iEi = ~∇ · ~E = 4π

c
j0 = 4π

�c
�cρ⇒ ~∇ · ~E = 4πρ �

Per ν = i, invece:

∂µF
µi = ∂0F

0i + ∂jF
ji = −∂0E

i − ∂jF
ij = −∂0E

i + εijk∂jB
k =

= −1
c

∂

∂t
Ei + (~∇×B)i = 4π

c
ji = 4π

c
~j

⇒ ~∇× ~B − 1
c

∂

∂t
~E = 4π

c
~j

Dalla stessa relazione si può ricavare l’equazione di continuità:

∂µF
µν = 4π

c
jν ⇒ ∂ν∂µ︸ ︷︷ ︸

S

F µν︸︷︷︸
A

= ∂ν
4π
c
jν = 0

dove si è usata l’identità vista in precedenza riguardante la contrazione di un
tensore simmetrico S e uno antisimmetrico A. Ma allora: Equazione di continu-

ità4π
c
∂νj

ν = 0⇒ ∂νj
ν = ∂0j

0 + ∂ij
i = 1

c

d

dt
(cρ) + ~∇ ·~j ⇒ d

dt
ρ+ ~∇ ·~j = 0

−−→∫
dτ

∫
τ

dρ

dt
dτ +

∫
τ

~∇ ·~jdτ = 0⇒ dQ

dt
+
∫

Σ
~j · n̂dΣ⇒ dQ

dt
= −φΣ(~j) �

(Nell’ultimo passaggio si è integrato sul volume totale τ delle cariche e si è
applicato il teorema della divergenza, ricavando l’equazione di continuità in
forma integrale).
Manca solo ricavare l’espressione covariante della forza di Lorentz . Partiamo Forza di Lorentz
dalla contrazione:

F µν︸︷︷︸
A

uνuµ︸ ︷︷ ︸
S

= 0
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dove uν e uµ sono quadrivelocità.
Definendo Fµ := kF µνuν , con k scalare, si avrà:

Fµuµ = kF µνuνuµ = 0

ossia F µ è ortogonale alla quadrivelocità uµ. Tale risultato basta per affermare
che Fµ è un quadrivettore8.
Con la scelta di k := e/c, si ha che l’espressione:

Fµ = e

c
F µνuν = dpµ

ds

genera sia la forza di Lorentz che la legge della potenza.
Esaminiamone allora le componenti, partendo da µ = 0. Poiché i termini sulla
diagonale sono nulli, avremo che ν = i = 1, 2, 3:

(1) : e
c
F 0iu

i
= e

c
(−Ei)( − u i ) = e

c
Ei
γ

c
vi = eγ

c2
~E · ~v

(2) : dp
0

ds
= γ

c

d

dt

E
c

= γ

c2
d

dt
E

(1) = (2) : γ
c2
d

dt
E = eγ

c2
~E · ~v ⇒ d

dt
E = e ~E · ~v � (40)

Per µ = i, invece:

(1) : e
c

(
F i0u0 + F iju

j

)
= e

c

[
Eiγ − εijkBk

(
− γ

c
v
j
)]

= γ

c
e

 ~E + ~v × ~B

c


i

(2) : dp
i

ds
= γ

c

d

dt
pi

(1) = (2) : γ
c
e

 ~E + ~v × ~B

c


i

= γ

c

d

dt
pi ⇒ d

dt
~p = e

 ~E + ~v × ~B

c

 (41)

2.2 Trasformazioni dei campi
Il tensore del campo elettromagnetico F µν trasforma come un tensore di ordine
2:

F ′µν = Λµ
ρΛν

σF
ρσ

Riscriviamo i termini per comodità:

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ; Λ =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


Partiamo con le trasformazioni del campo elettrico, nel caso di un boost lungo
l’asse x̂. Procedendo componente per componente:

F ′01 = (−E1)′ = Λ0
ρΛ1

σF
ρσ

8Approfondendo, ciò deriva dal Teorema del Quoziente per il calcolo tensoriale, per cui se
consideriamo AB = C, con A e C tensori, allora anche B è un tensore. Qui, in particolare,
abbiamo che uµ è un quadrivettore (tensore di ordine 1), e il risultato del prodotto Fµuµ è
0, ossia uno scalare (tensore di ordine 0). Perciò anche Fµ deve essere un quadrivettore.
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Con la convenzione utilizzata, i numeri ad apice rappresentano righe, e quelli
a pedice colonne. Perciò Λ0

ρ rappresenta la prima riga della matrice Λ, e Λ1
σ

la seconda riga. Notiamo subito che, per queste due righe, i termini non nulli
si trovano solo sulle prime due colonne, per cui ρ e σ possono assumere valore
0 e 1. Inoltre, poiché i termini sulla diagonale di F ρσ sono nulli, deve essere
ρ 6= σ. Avremo quindi:

F ′01 = Λ0
0Λ1

1F
01 + Λ0

1Λ1
0F

10 = (Λ0
0Λ1

1 − Λ0
1Λ1

0)F 01 = (γ2 − β2γ2)(−E1) =
= −��γ2(����1− β2)E1 = −E1 ⇒ E ′1 = E1

Per il secondo termine si ha:

F ′02 = (−E2)′ = Λ0
ρΛ2

σF
ρσ

Nella terza riga di Λ, l’unico termine non nullo corrisponde alla terza colonna,
per cui σ = 2, e si ha Λ2

2 = 1. D’altro canto, ρ può assumere, come prima,
solamente i valori 0 e 1:

F ′02 = Λ0
0F

02+Λ0
1F

12 = γ(−E2)−βγ(−B3) = −γ(E2−βB3)⇒ E ′2 = γ(E2−βB3)

Un discorso analogo vale per la terza componente:

F ′03 = (−E3)′ = Λ0
0F

03 + Λ0
1F

13 = γ(−E3)− βγ(B2)⇒ E ′3 = γ(E3 + βB2)

Per le trasformazioni del campo magnetico si segue lo stesso procedimento:

F ′32 = B′1 = Λ3
ρΛ2

σF
ρσ = Λ3

3Λ2
2F

32 = F 32 = B1

F ′13 = B′2 = Λ1
ρΛ3

σF
ρσ = Λ1

0Λ3
3F

03 + Λ1
1Λ3

3F
13 = −βγ(−E3) + γB2 = γ(B2 + βE3)

F ′21 = B′3 = Λ2
ρΛ1

σF
ρσ = Λ2

2Λ1
σF

2σ = Λ1
0F

20 + Λ1
1F

21 = (−βγ)E2 + γB3 = γ(B3 − βE2)

Riassumiamo le trasformazioni dei campi elettromagnetici:
E ′x = Ex

E ′y = γ(Ey − βBz)

E ′z = γ(Ez + βBy)

;


B′x = Bx

B′y = γ(By + βEz)

B′z = γ(Bz − βEy)

Notiamo perciò che le componenti parallele al moto relativo tra i sdr non
variano (in questo caso consideriamo infatti uno spostamento lungo x̂), mentre
per le altre si ha un mescolamento di campi elettrici e magnetici. Perciò, se in
un sdr si misurano entrambi i campi, in un altro è possibile che se ne osservi
solo uno: questo fatto sarà molto importante per semplificare i conti.

2.3 Invarianti elettromagnetici
Troviamo ora delle grandezze invarianti che possano essere sfruttate nei conti.
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(B2 − E2)
I Una prima idea è la contrazione del tensore del campo elettromagnetico
con se stesso:

FµνF
µν

Riscriviamolo per comodità:

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ; Fµν = gρµgσνF
σρ =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


Dividendo nei blocchetti colorati, si ottiene la scomposizione:

FµνF
µν = Fi0F

i0 + F0iF
0i + Fij

i<j

F ij + Fji
j<i

F ji = −E2
i −E2

i B2
k +B2

k = 2(B2−E2)

( ~E · ~B)
II Un altro invariante è dato da:

εµνρσF
µνF ρσ

Per la presenza di ε gli indici µ, ν, ρ, σ non possono presentare ripetizioni (cioè
non possono esserci due indici con lo stesso valore). Le possibilità sono perciò
le permutazioni di 0123, per un totale di 4! = 24 opzioni. Una buona tattica
per calcolarle è dividerle in tre gruppetti da 8:

εµνρσF
µνF ρσ = 8(ε0123F

01F 23 + ε0213F
02F 13 + ε0321F

03F 21)

Dimostriamo, brevemente, la logica di questo passaggio. L’idea è di sfruttare
il più possibile l’antisimmetria di ε e F , per cui se uno scambio degli indici
coinvolge entrambi i tensori, allora i segni − che compaiono si cancelleranno.
Per esempio, partendo da ε0123F

01F 23, possiamo scambiare 0 e 1 e ottenere
ε1023F

10F 23, che è uguale a prima. Il gioco non funziona, invece, se lo scambio
degli indici coinvolge entrambi gli F , per esempio ε0123F

01F 23 → ε0213F
02F 13,

per cui la variazione non è un semplice segno.
In generale, partendo da una qualsiasi combinazione avremo 8 scelte valide
per gli scambi di indice che non ne modificano il risultato. Le prime 4 si
ottengono, banalmente, scambiando gli indici del primo F (tenendo costanti
quelli del secondo), e poi invertendo i ruoli:

ε0123F
01F 23 = ε1023F

10F 23 = ε0132F
01F 32 = ε1032F

10F 32

Notiamo poi che si può scambiare l’ordine degli F senza cambiare segno: ciò
equivale a due scambi degli indici per ε, che quindi si annullano. Possiamo ora
ripetere la stessa procedura di prima e ottenere le altre 4 possibilità:

ε0123F
01F 23 → ε2301F

23F 01 = ε3201F
32F 01 = ε2310F

23F 10 = ε3210F
32F 10

Scambiando gli indici tra F diversi ci spostiamo da una “classe di possibilità”
all’altra. Basterà effettuare due di questi scambi per avere tutte e 24 le opzioni,
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come scritto di sopra.
Ora non resta che sostituire i termini di F e calcolare:

εµνρσF
µνF ρσ = 8(ε0123F

01F 23 + ε0213F
02F 13 + ε0321F

03F 21) =
= 8[(−1)(−E1)(−B1) + 1(−E2)(B2) + (−1)(−E3)(−B3)] = −8[ ~E · ~B]

Abbiamo quindi scoperto come calcolare questo secondo invariante. Poiché
~E · ~B è preservato, si ha che se ~E ⊥ ~B in un sdr allora lo è anche in tutti gli
altri.

2.4 Riduzione ad un solo campo
Possiamo sfruttare quanto ricavato per trovare trasformazioni che annullano
uno dei due campi (elettrico o magnetico), semplificando di conseguenza i
conti.

A. Campi perpendicolari Se, i campi elettrico e magnetico sono tra loro
perpendicolari lo saranno in tutti i sistemi di riferimento (come visto sopra).
A seconda del loro modulo, avremo, in generale, tre opzioni:

1. Se ~E · ~B = 0 e B2 − E2 < 0, allora esiste un sdr in cui ~B′ = 0

2. Se ~E · ~B = 0 e B2 − E2 > 0, allora esiste un sdr in cui ~E ′ = 0

3. Se ~E · ~B = 0 e B2−E2 = 0, allora non è possibile annullare uno dei due
campi in alcun sdr.

(A livello mnemonico: si può annullare il campo col modulo minore)

B. Campi non perpendicolari D’altro canto, se ~E · ~B 6= 0, allora esiste
sempre un sdr in cui ~E ′ ‖ ~B′.

Dimostrazione (A) Dimostriamo il primo caso. Sia ~E = (0, E, 0) e ~B =
(0, 0, B), con ~E· ~B = 0 (ovviamente) e B2−E2 < 0. Scriviamo le trasformazioni
del campo magnetico:

B′1 = B1 = 0

B′2 = γ(B2 + βE3) = 0

B′3 = γ(B3 − βE2) = γ(B − βE)

Imponendo B′3 = 0 (campo magnetico nullo nel nuovo sdr), la condizione
necessaria è che β = B/E, che risulta possibile se |β| < 1, ma questo è vero
perché per ipotesi B2 − E2 < 0 ⇒ B/E < 1. In tale sdr il campo elettrico
(l’unico presente) varrà perciò E ′ =

√
−B2 + E2.

Invertendo le disuguaglianze si dimostra anche il caso B2−E2 > 0 (in cui sarà
E ad annullarsi).
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Dimostrazione (B) Se invece ~E · ~B 6= 0 basta imporre la condizione di
parallelismo, ossia l’annullarsi del prodotto vettore. Consideriamo, per sem-
plicità, campi ~E e ~B lungo il piano ŷẑ (in modo da isolare la componente
lungo x̂ del prodotto vettore), per cui ~E = (0, E2, E3) e ~B = (0, B2, B3), con
le trasformazioni date da un boost lungo la direzione x̂. Il prodotto vettoriale
diviene:

~E ′ × ~B′ = 0 = det


x̂ ŷ ẑ

0 γ(E2 − βB3) γ(E3 + βB2)
0 γ(B2 + βE3) γ(B3 − βE2)

 =

= x̂γ2[(E2 − βB3)(B3 − βE2)− (E3 + βB2)(B2 + βE3)]

−−→
‖... ‖ �

�γ2[( E2B3 − E3B2 )− β(E2
2 + E2

3︸ ︷︷ ︸
E2

+B2
2 +B2

3︸ ︷︷ ︸
B2

) + β2( E2B3 − E3B2 )] != 0

→ (E2B3 − E3B2︸ ︷︷ ︸
| ~E× ~B|1

)(1 + β2) = β(E2 +B2)⇒ β

1 + β2 = |
~E × ~B|1
E2 +B2

Ripetendo gli stessi conti per campi sui piani x̂ŷ o ŷẑ e considerando boost
lungo ŷ o ẑ è possibile ottenere altre relazioni (della stessa forma), che con-
ducono a questa espressione generale:

~β

1 + β2 =
~E × ~B

E2 +B2

Perciò partendo da una situazione in cui ~E e ~B non sono perpendicolari, è
possibile effettuare un boost definito da ~β (vettore che indica sia la velocità
necessaria che la direzione) per giungere ad un sdr in cui ~E e ~B sono paralleli.
Ma ciò ha senso solo se |~β| < 1 (altrimenti richiederebbe velocità > c). Si
dimostra che tale condizione è sempre soddisfatta.
Partiamo con alcune maggiorazioni:

| ~E × ~B| = EB sin θ ≤ EB ; (sin θ ≤ 1)

⇒
| ~E × ~B|
E2 +B2 ≤

EB

E2 +B2 ≤
1
2

L’ultimo passaggio si ha dalla nota disuguaglianza a2 + b2 > 2ab (che si di-
mostra dall’ovvia (a − b)2 ≥ 0), per cui E2 + B2 ≥ 2EB. Una frazione si
maggiora riducendo il denominatore, il cui valor minimo è in questo caso pari
a 2EB come appena mostrato.
D’altro canto, la funzione |~β|/(1 + β2) è monotona crescente per 0 ≤ β ≤ 1, e
assume il valore 1/2 in β = 1. Perciò, se |~β|/(1 + β2) ≤ 1/2 come ricavato, ne
conseguirà |~β| < 1.

3 Moti nei campi

3.1 Particella carica in campo elettrico
Consideriamo una particella di carica unitaria +e che si muove sul piano x̂ŷ,
con momento iniziale ~p(0) = (p0,x, p0,y, 0), in presenza di un campo elettrico
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~px̂

ŷ

~E

Figure“1: Particella carica in un campo elettrico ~E

uniforme e costante ~E = Ex̂ lungo la direzione +x̂.
Dall’espressione della forza di Lorentz (41) si ottiene, visto che ~B = 0, la
seguente espressione:

d~p

dt
= e ~E ⇒ ṗx = eE; ṗy = 0; ṗz = 0

Integrando si giunge a: 
px(t) = p0,x + eEt

py(t) = p0,y

pz(t) = 0

Come ci aspettavamo, il campo elettrico accelera la particella lungo x̂. Ammesso
che il campo sia sufficientemente esteso, negli istanti precedenti a t = 0 la par-
ticella era più lenta, e ad un certo t̄ aveva velocità nulla lungo x̂. Possiamo
sfruttare ciò per effettuare una traslazione temporale del sistema di riferimento
e rimuovere il fastidioso termine p0,x per semplicità di conti:

t′ = t+ p0,x

eE
⇒ t = t′ − p0,x

eE
⇒ px(t′) = eEt′

Per non appesantire la notazione, nei passaggi seguenti si scriverà semplice-
mente px(t) = eEt eliminando gli apici.
Ricordando ora:

β = v

c
= c

p

E
⇒ ~p

E
= ~v

c2 ⇒ ~v = c2~p

E
(42)

e la relazione di mass-shell E =
√
m2c4 + c2p2 , si ottiene:

vx = dx

dt
=
c2 px(t)
E

= c2(eEt)√√√√m2c4 + c2(p2
0,y︸ ︷︷ ︸

E0

+(eEt)2)
= c2(eEt)√
E2

0 + c2(eEt)2
= c2(eEt)

E0

1 +
(
c(eEt)
E0

)2
 1

2

Ponendo α = eE/E0 si giunge a:

dx

dt
= c2αt√

1 + (cαt)2
= 1
α

d

dt

√
1 + (αct)2 ⇒ x(t) = 1

α

√
1 + (αct)2 + cx
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Ripetendo lo stesso conto lungo ŷ:

vy = dy

dt
= c2py(t)

E
= c2p0,y

E0

√
1 + (αct)2

= p0,yc

E0α

d

dt
arcsinh(αct)⇒ y(t) = p0,y

αE0
arcsinh(αct)+cy

Definendo l’origine del sistema di riferimento a partire dalla posizione della
particella a t = 0 si deducono le condizioni al contorno x(0) = 0 e y(0) = 0,
che portano a trovare cx = −1/α e cy = 0. La traiettoria percorsa dalla
particella è perciò data in forma parametrica da:

x(t) = 1
α

(√
1 + (αct)2 − 1

)
y(t) = p0,yc

eE
arcsinh(αct)

Da y(t) si può ricavare αct

y(t) = p0,yc

eE
arcsinh(αct)⇒ eEy(t)

p0,yc
= arcsinh(αct)⇒ αct = sinh

(
eEy(t)
p0,yc

)

che, sostituito nell’espressione per x(t), conduce alla forma grafico:

x(t) = E0

eE


√√√√1 + sinh2

(
eEy(t)
p0,yc

)
− 1

 = E0

eE

(
cosh

(
eEy(t)
p0,yc

)
− 1

)

3.2 Particella carica in campo magnetico
Consideriamo ora una particella di carica +e che parte con velocità ~v(0) =
(vx(0), vy(0), vz(0)) all’interno di un campo magnetico uniforme e costante ~B =
(0, 0, B) diretto lungo +ẑ.
Dall’espressione della forza di Lorentz (41) e applicando la relazione trovata
nel paragrafo precedente (42) si ottiene:

d~p

dt
= E
c2
d~v

dt

e

c
(~v × ~B)⇒ d~v

dt
= ec

E
(~v × ~B) (43)

Partendo dal risultato in (40) osserviamo poi che, essendo ~E = 0, l’energia
cinetica della particella non varia:

dE
dt

= e ~E · ~v

Perciò non varia neanche il modulo della velocità, e da ciò si deduce che
l’accelerazione subita dalla particella è sempre perpendicolare alla sua velocità
(come nel caso classico):

dE
dt

= 0⇒ dv2

dt
= 0 = 2~v · d~v

dt︸︷︷︸
~a

= 0⇒ ~v(t) ⊥ ~a(t) ∀t

Per trovare la traiettoria è necessario integrare l’equazione in (43). Iniziamo
calcolando il termine ~v × ~B:

~v × ~B = det


x̂ ŷ ẑ

vx(t) vy(t) vz(t)
0 0 B

 = x̂(vy(t)B)− ŷ(vx(t)B)
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Sostituendo il risultato in (43) e proiettando sulle varie coordinate:
dvx
dt

= ecB

E︸ ︷︷ ︸
ω

vy;
dvy
dt

= − ecB
E︸ ︷︷ ︸
ω

vx;
dvz
dt

= 0

Osserviamo che, come nel caso classico, il campo magnetico lascia invariata
la componente della velocità parallela ad esso. Il moto lungo ẑ sarà perciò
uniforme, e integrando si ottiene banalmente: vz(t) = vz(0) e xz = z0 + vz(0)t.
Ponendo ω = (ecB)/E si giunge al sistema:v̇x(t) = ωvy(t)

v̇y(t) = −ωvx(t)

Per risolverlo definiamo la “velocità complessa” come v⊥(t) = vx(t) + ivy(t).
Derivando e sostituendo le equazioni di sopra:

v̇⊥(t) = v̇x(t) + iv̇y(t) = ωvy(t)− iωvx(t) = −iω(vx(t) + ivy(t)) = −iωv⊥(t)

In questo modo si è ridotto un sistema di due equazioni differenziali a coef-
ficienti reali in una sola (ma a coefficienti complessi), che si risolve con una
semplice integrazione:

v̇⊥(t) = −iωv⊥(t)⇒ v⊥(t) = ke−iωt

Imponiamo quindi la condizione iniziale v⊥(0) = vx(0) + ivy(0) = k. Os-
serviamo che il modulo |v⊥(t)| = |v⊥(0)| ∀t, per cui vx(0) = |v⊥| cos θ e
vy(0) = |v⊥| sin θ, con θ = arctan(vy(0)/vx(0)).
Sostituendo nell’equazione:

v⊥(t) = |v⊥|(cos θ+i sin θ)e−iωt = |v⊥|e−i(ωt−α) = |v⊥| cos(ωt−α)−i|V⊥| sin(ωt−α)

Per trovare le soluzioni reali per vx(t) e vy(t) basta dividere parte reale e parte
immaginaria e integrare:
vx(t) = dx

dt
= |v⊥| cos(ωt− α) = v⊥

ω

d

dt
sin(ωt− α)

vy(t) = dy

dt
= −|v⊥| sin(ωt− α) = v⊥

ω

d

dt
cos(ωt− α)

⇒


x(t)− x0 = |v⊥|

ω
sin(ωt− α)

y(t)− y0 = |v⊥|
ω

cos(ωt− α)

Elevando al quadrato e sommando si elimina la dipendenza dal tempo:

(x(t)− x0)2 + (y(t)− y0)2 = v2
⊥
ω2

e si trova che il moto sul piano x̂ŷ è circolare, con raggio R = |v⊥|/ω, percorso
a velocità angolare uniforme ω:

ω = ecB

E
= e�cB

mγc�2
= eB

mγc
= ωnon rel

γ

Da cui:
R = v⊥

ω
= |v⊥|
ecB

mγc2 = |v⊥|mγc
eB

Ricordando la relazione |p⊥| = E|v⊥|/c2 si può scrivere il raggio in funzione del
momento:

R = v⊥
ω

=
(
c2p⊥
E

)( E
ecB

)
= cp⊥
eB

Francesco Manzali, Giugno 2018 35



4 Formulario

Derivata ∂µ ≡
∂

∂xµ
:=
(

1
c

∂

∂t
,∇
)

(44)

∂µ ≡ ∂

∂xµ
:=
(

1
c

∂

∂t
,−∇

)
(45)

Quadrivelocità uµ := dxµ

ds
= γ(v)

(
1, ~v
c

)
; uµuµ = 1

(46)

Intervallo ds =
√
gµνdxµdxν =

√
dxµdxν = cdt

γ(v)
(47)

Quadriaccelerazione wµ := duµ

ds
=
(
γ4

c3 ~v · ~a,
γ2

c2 a
i + γ4

c4 v
i(~v · ~a)

)
; wµuµ = 0;

(48)

Quadrimomento pµ = mcuµ =
(
E

c
,mγ(v)vi

)
(49)

Energia E =
√
m2c4 + c2|~p|2 = mγ(v)c2

(50)

Quadriforza F µ = dpµ

ds
=
(
γ

c2
~F · ~v, γ

c
~F
)

; F µuµ = 0
(51)

β = v

c
= c

p

E
⇒ β = p

E
(52)

βγ = p

M

Infatti β = p/E, e γ = 1/
√

1− β2, perciò:

βγ = p

E

1√
1− p2

E2

=
(∗)

p√
M2 + p2

1√
M2

M2 + p2

= p

���
���√

M2 + p2
��

���
�√

M2 + p2

M
= p

M

Dove in (∗) si è applicata la relazione di mass-shell: E =
√
m2c4 + p2c2 con

c = 1.
Relazione tra β e γ:

γ = 1√
1− β2 ⇒ γ2 = 1

1− β2 ⇒ (1−β2)γ2 = 1⇒ γ2−β2γ2 = 1⇒ β = γ2 − 1
γ2

5 Appendice

5.1 Cambio di variabile casuale
Sia x una variabile casuale con distribuzione data dalla pdf f(x), e y un’altra
variabile casuale derivata dalla prima tramite una relazione funzionale y =
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T (x). Ci si pone il problema di trovare la pdf di y.
Il caso più semplice è se T è biunivoca. Allora, intuitivamente, quando x
appartiene ad un intervallino centrato su x∗ e largo dx, allora y si troverà in
un intervallino centrato su y∗ = T (x∗) e largo dy = |T ′(x)|dx (dalla definizione
di differenziale - il modulo compare poiché stiamo considerando l’ampiezza di
un intervallo, quantità che è definita positiva). Poiché T è biunivoca9, tale
intervallino di y è unico. Perciò, se x si trova nel suo intervallino dx con
probabilità dp = f(x)dx (dalla def. di pdf), allora y sarà per forza in dy, con
la stessa probabilità dp.
Poiché la dp è la stessa possiamo scrivere la seguente uguaglianza:

f(x)dx = g(y)dy = g(y)|T ′(x)|dx⇒ g(x) = f(x)
|T ′(x)|

Possiamo ora effettuare il cambio di variabili scrivendo x in funzione di y
tramite x = T−1(y) (che esiste poiché T è biunivoca):

g(y) = f(T−1(y))
|T ′(T−1(y))|

che costituisce la formula per il cambio di variabile casuale.
Esempio. Giustifichiamo la scrittura df(θ) = a sin θdθ ⇒ dg(cos θ) = a d cos θ.
Qui abbiamo una variabile casuale θ che si distribuisce con pdf data da f(θ).
Il cambio di variabile è T : θ 7→ cos θ10. Applicando la formula:

g(cos θ) = a sin(T−1(cos θ))
| − sin(T−1(cos θ))| = a

da cui dg(cos θ) = a d cos θ come desiderato.

9Nel caso T non sia biunivoca sarà necessario considerare tutti gli intervallini in cui y
potrebbe trovarsi dato che x è in dx, e “spalmare” su di essi la probabilità dp

10Nota: non è una funzione biunivoca, ma fortunatamente non sarà necessario fare con-
siderazioni complesse grazie ad una semplificazione
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